[1] Yuan, H. et al. Space-division multiplexing in data center networks: on multi-core fiber solutions and crosstalk-suppressed resource allocation. Journal of Optical Communications and Networking 10, 272-288 (2018). doi: 10.1364/JOCN.10.000272
[2] Puttnam, B. J., Rademacher, G. & Luís, R. S. Space-division multiplexing for optical fiber communications. Optica 8, 1186-1203 (2021). doi: 10.1364/OPTICA.427631
[3] Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nature Photonics 7, 354-362 (2013). doi: 10.1038/nphoton.2013.94
[4] van Uden, R. G. H. et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nature Photonics 8, 865-870 (2014). doi: 10.1038/nphoton.2014.243
[5] Essiambre, R. J. et al. Breakthroughs in photonics 2012: space-division multiplexing in multimode and multicore fibers for high-capacity optical communication. IEEE Photonics Journal 5, 0701307 (2013). doi: 10.1109/JPHOT.2013.2253091
[6] Kingsta, R. M. & Selvakumari, R. S. A review on coupled and uncoupled multicore fibers for future ultra-high capacity optical communication. Optik 199, 163341 (2019). doi: 10.1016/j.ijleo.2019.163341
[7] Zhao, Z. Y. et al. Distributed vibration sensor based on space-division multiplexed reflectometer and interferometer in multicore fiber. Journal of Lightwave Technology 36, 5764-5772 (2018). doi: 10.1109/JLT.2018.2878450
[8] Arrizabalaga, O. et al. High-performance vector bending and orientation distinguishing curvature sensor based on asymmetric coupled multi-core fibre. Scientific Reports 10, 14058 (2020). doi: 10.1038/s41598-020-70999-8
[9] Feng, Q. et al. Multi-parameter monitoring for steel pipe structures using monolithic multicore fibre based on spatial-division-multiplex sensing. Measurement 164, 108121 (2020). doi: 10.1016/j.measurement.2020.108121
[10] Hayashi, T. et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber: erratum. Optics Express 27, 12517-12517 (2019). doi: 10.1364/OE.27.012517
[11] Gené, J. M. & Winzer, P. J. A universal specification for multicore fiber crosstalk. IEEE Photonics Technology Letters 31, 673-676 (2019). doi: 10.1109/LPT.2019.2903717
[12] Hanzawa, N. et al. Relationship between cross-sectional geometry and splice loss in a multicore fiber. Optical Fiber Technology 75, 103152 (2023). doi: 10.1016/j.yofte.2022.103152
[13] Takahashi, M. et al. Multicore fiber fusion splicer suitable for practical applications. Proceedings of 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC). Toyama, Japan: IEEE, 2022, 1-3.
[14] Downie, J. D., Liang, X. J. & Makovejs, S. Assessing capacity and cost/capacity of 4-core multicore fibers against single core fibers in submarine cable systems. Journal of Lightwave Technology 38, 3015-3022 (2020).
[15] Takahashi, M. et al. Fan-in/fan-out for multicore fibers. Proceedings of 2022 27th OptoElectronics and Communications Conference (OECC) and 2022 International Conference on Photonics in Switching and Computing (PSC). Toyama, Japan: IEEE, 2022, 1-3.
[16] Fang, J. C. et al. 3D waveguide device for few-mode multi-core fiber optical communications. Photonics Research 10, 2677-2685 (2022).
[17] Klaus, W. et al. Free-space coupling optics for multicore fibers. IEEE Photonics Technology Letters 24, 1902-1905 (2012). doi: 10.1109/LPT.2012.2217490
[18] Khan, F. et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments. IEEE Sensors Journal 19, 5878-5884 (2019). doi: 10.1109/JSEN.2019.2905010
[19] Bronnikov, K. et al. Durable shape sensor based on FBG array inscribed in polyimide-coated multicore optical fiber. Optics Express 27, 38421-38434 (2019). doi: 10.1364/OE.380816
[20] Cooper, L. J. et al. Design and performance of multicore fiber optimized towards communications and sensing applications. Proceedings of SPIE 9359, Optical Components and Materials XII. San Francisco: SPIE, 2015, 82-88.
[21] Ishida, I. et al. Possibility of stack and draw process as fabrication technology for multi-core fiber. Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013. Anaheim: OSA, 2013, 1-3.
[22] Poletti, F. et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum. Nature Photonics 7, 279-284 (2013). doi: 10.1038/nphoton.2013.45
[23] Amma, Y. et al. Accuracy of core alignment with end-view function for multicore fiber. Proceedings of 2014 IEEE Photonics Society Summer Topical Meeting Series. Montreal: IEEE, 2014, 170-171.
[24] Shen, L. et al. End-view image processing based angle alignment techniques for specialty optical fibers. IEEE Photonics Journal 9, 7201508 (2017).
[25] Yan, C. et al. 3D refractive index measurements of special optical fibers. Optical Fiber Technology 31, 65-73 (2016).
[26] Wahba, H. H. & Kreis, T. Characterization of graded index optical fibers by digital holographic interferometry. Applied Optics 48, 1573-1582 (2009). doi: 10.1364/AO.48.001573
[27] Wahba, H. H. Reconstruction of 3d refractive index profiles of PM PANDA optical fiber using digital holographic method. Optical Fiber Technology 20, 520-526 (2014). doi: 10.1016/j.yofte.2014.06.002
[28] Fan, S. L. et al. Optical fiber refractive index profiling by iterative optical diffraction tomography. Journal of Lightwave Technology 36, 5754-5763 (2018). doi: 10.1109/JLT.2018.2876070
[29] Zheng, W. Z. Automated fusion-splicing of polarization maintaining fibers. Journal of Lightwave Technology 15, 125-134 (1997). doi: 10.1109/50.552120
[30] Zheng, W. X. et al. Interrelation profile analysis method for alignment of polarization-maintaining fiber. Proceedings of the National Fiber Optic Engineers Conference. San Diego: OPG, 2010, 1-3.
[31] Idrisov, R. et al. Experimental approach for complex optical fiber angular orientation and twist measurement. Advanced Photonics Research 3, 2100161 (2022). doi: 10.1002/adpr.202100161
[32] Saito, K. et al. Side-view based angle alignment technique for multi-core fiber. Proceedings of the Optical Fiber Communication Conference 2016. Anaheim: OPG, 2016, 1-3.
[33] Khonina, S. N. et al. Bessel beam: significance and applications—a progressive review. Micromachines 11, 997 (2020). doi: 10.3390/mi11110997
[34] Chen, J. et al. Optical pulling force. Nature Photonics 5, 531-534 (2011). doi: 10.1038/nphoton.2011.153
[35] Zhang, G. D. et al. Ultrashort Bessel beam photoinscription of Bragg grating waveguides and their application as temperature sensors. Photonics Research 7, 806-814 (2019). doi: 10.1364/PRJ.7.000806
[36] Dudutis, J., GeČys, P. & RaČiukaitis, G. Non-ideal axicon-generated Bessel beam application for intra-volume glass modification. Optics Express 24, 28433-28443 (2016). doi: 10.1364/OE.24.028433
[37] Planchon, T. A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nature Methods 8, 417-423 (2011). doi: 10.1038/nmeth.1586
[38] Gao, L. et al. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nature Protocols 9, 1083-1101 (2014).
[39] Li, S. H. & Wang, J. Adaptive free-space optical communications through turbulence using self-healing Bessel beams. Scientific Reports 7, 43233 (2017). doi: 10.1038/srep43233
[40] Chu, X. Analytical study on the self-healing property of Bessel beam. The European Physical Journal D 66, 259 (2012). doi: 10.1140/epjd/e2012-30343-6
[41] Dufour, P. et al. Two-photon excitation fluorescence microscopy with a high depth of field using an axicon. Applied Optics 45, 9246-9252 (2006). doi: 10.1364/AO.45.009246
[42] Ok, G. et al. Foreign object detection by sub-terahertz quasi-Bessel beam imaging. Sensors 13, 71-85 (2012). doi: 10.3390/s130100071
[43] Cao, Z. L. et al. Propagation of on-axis and off-axis Bessel beams in a gradient-index medium. Journal of the Optical Society of America A 35, 230-235 (2018). doi: 10.1364/JOSAA.35.000230
[44] Benesty, J. et al. Pearson correlation coefficient. in Noise Reduction in Speech Processing (eds Cohen, I. et al. ) (Berlin, Heidelberg: Springer, 2009), 1-4.
[45] Fisher, R. A. Statistical Methods for Research Workers. in Breakthroughs in Statistics: Methodology and Distribution (eds Kotz, S. & Johnson, N. L. ) (New York: Springer, 1992), 66-70.