[1] |
Lane, R. G. & Tallon, M. Wave-front reconstruction using a Shack–Hartmann sensor. Applied Optics 31, 6902-6908 (1992). doi: 10.1364/AO.31.006902 |
[2] |
Guo, Y. M. et al. Deep phase retrieval for astronomical Shack–Hartmann wavefront sensors. Monthly Notices of the Royal Astronomical Society 510, 4347-4354 (2022). doi: 10.1093/mnras/stab3690 |
[3] |
Lan, B. et al. Distorted wavefront detection of orbital angular momentum beams based on a Shack–Hartmann wavefront sensor. Optics Express 30, 30623-30629 (2022). doi: 10.1364/OE.465728 |
[4] |
Andrade, P. P. et al. Estimation of atmospheric turbulence parameters from Shack–Hartmann wavefront sensor measurements. Monthly Notices of the Royal Astronomical Society 483, 1192-1201 (2019). doi: 10.1093/mnras/sty3181 |
[5] |
Imperato, S. et al. Single-shot quantitative aberration and scattering length measurements in mouse brain tissues using an extended-source Shack-Hartmann wavefront sensor. Optics Express 30, 15250-15265 (2022). doi: 10.1364/OE.456651 |
[6] |
Brajones, J. M. et al. Highly sensitive Shack–Hartmann wavefront sensor: application to non-transparent tissue mimic imaging with adaptive light-sheet fluorescence microscopy. Methods Protocols 2, 59 (2019). doi: 10.3390/mps2030059 |
[7] |
Hu, L. J. et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection. Optics Express 27, 33504-33517 (2019). doi: 10.1364/OE.27.033504 |
[8] |
Holló, C. T. et al. Objective quantification and spatial mapping of cataract with a Shack-Hartmann wavefront sensor. Scientific Reports 10, 12585 (2020). doi: 10.1038/s41598-020-69321-3 |
[9] |
Vacalebre, M. et al. Advanced optical wavefront technologies to improve patient quality of vision and meet clinical requests. Polymers 14, 5321 (2022). doi: 10.3390/polym14235321 |
[10] |
Park, J. H. et al. Perspective: wavefront shaping techniques for controlling multiple light scattering in biological tissues: toward in vivo applications. APL Photonics 3, 100901 (2018). doi: 10.1063/1.5033917 |
[11] |
Akondi, V. & Dubra, A. Shack-Hartmann wavefront sensor optical dynamic range. Optics Express 29, 8417-8429 (2021). doi: 10.1364/OE.419311 |
[12] |
Rocktäschel, M. & Tiziani, H. J. Limitations of the Shack–Hartmann sensor for testing optical aspherics. Optics & Laser Technology 34, 631-637 (2002). |
[13] |
Lindlein, N., Pfund, J. & Schwider, J. Expansion of the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses. Optical Engineering 39, 2220-2225 (2000). doi: 10.1117/1.1304846 |
[14] |
Lindlein, N. & Pfund, J. Experimental results for expanding the dynamic range of a Shack-Hartmann sensor by using astigmatic microlenses. Optical Engineering 41, 529-533 (2002). doi: 10.1117/1.1430724 |
[15] |
Molebny, V. V. Scanning Shack-Hartmann wavefront sensor. Proceedings of SPIE 5412, Laser Radar Technology and Applications IX. Orlando, Florida, United States: SPIE, 2002. |
[16] |
Lee, W. W. , Lee, J. H. & Hwangbo, C. K. Increase of dynamic range of a Shack-Hartmann sensor by shifting detector plane. Proceedings of SPIE 5639, Adaptive Optics and Applications III. Beijing, China: SPIE, 2004. |
[17] |
Choo, H. & Muller, R. S. Addressable microlens array to improve dynamic range of shack–hartmann sensors. Journal of Microelectromechanical Systems 15, 1555-1567 (2006). doi: 10.1109/JMEMS.2006.886011 |
[18] |
Yoon, G. Y., Pantanelli, S. & Nagy, L. J. Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes. Journal of Biomedical Optics 11, 030502 (2006). doi: 10.1117/1.2197860 |
[19] |
Hongbin, Y. et al. A tunable Shack–Hartmann wavefront sensor based on a liquid-filled microlens array. Journal of Micromechanics and Microengineering 18, 105017 (2008). doi: 10.1088/0960-1317/18/10/105017 |
[20] |
Martínez-Cuenca, R. et al. Reconfigurable Shack–Hartmann sensor without moving elements. Optics Letters 35, 1338-1340 (2010). doi: 10.1364/OL.35.001338 |
[21] |
Aftab, M. et al. Adaptive Shack-Hartmann wavefront sensor accommodating large wavefront variations. Optics Express 26, 34428-34441 (2018). doi: 10.1364/OE.26.034428 |
[22] |
Xu, H. F. & Wu, J. G. Extended-aperture Hartmann wavefront sensor with raster scanning. Optics Express 29, 34229-34242 (2021). doi: 10.1364/OE.440576 |
[23] |
Pfund, J., Lindlein, N. & Schwider, J. Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm. Optics Letters 23, 995-997 (1998). doi: 10.1364/OL.23.000995 |
[24] |
Groening, S. et al. Wave-front reconstruction with a Shack–Hartmann sensor with an iterative spline fitting method. Applied Optics 39, 561-567 (2000). doi: 10.1364/AO.39.000561 |
[25] |
Lundström, L. & Unsbo, P. Unwrapping Hartmann-shack images from highly aberrated eyes using an iterative B-spline based extrapolation method. Optometry and Vision Science 81, 383-388 (2004). doi: 10.1097/01.opx.0000135086.61760.b7 |
[26] |
Leroux, C. & Dainty, C. A simple and robust method to extend the dynamic range of an aberrometer. Optics Express 17, 19055-19061 (2009). doi: 10.1364/OE.17.019055 |
[27] |
Smith, D. G. & Greivenkamp, J. E. Generalized method for sorting Shack-Hartmann spot patterns using local similarity. Applied Optics 47, 4548-4554 (2008). doi: 10.1364/AO.47.004548 |
[28] |
Kumar, V. C. P. & Ganesan, A. R. Shack–Hartmann wavefront sensor with enhanced dynamic range and reference-free operation. Optical Engineering 61, 054108 (2022). |
[29] |
Gao, Z. Y., Li, X. Y. & Ye, H. W. Large dynamic range Shack-Hartmann wavefront measurement based on image segmentation and a neighbouring-region search algorithm. Optics Communications 450, 190-201 (2019). doi: 10.1016/j.optcom.2019.05.045 |
[30] |
Yu, L. et al. Novel methods to improve the measurement accuracy and the dynamic range of Shack–Hartmann wavefront sensor. Journal of Modern Optics 61, 703-715 (2014). doi: 10.1080/09500340.2014.909054 |
[31] |
Lee, J., Shack, R. V. & Descour, M. R. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor. Applied Optics 44, 4838-4845 (2005). doi: 10.1364/AO.44.004838 |
[32] |
Otsu, N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems,Man,and Cybernetics 9, 62-66 (1979). doi: 10.1109/TSMC.1979.4310076 |
[33] |
Kennedy, J. & Eberhart, R. Particle swarm optimization. Proceedings of ICNN'95 - International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995. |
[34] |
Schott, S. et al. Characterization of the angular memory effect of scattered light in biological tissues. Optics Express 23, 13505-13516 (2015). doi: 10.1364/OE.23.013505 |
[35] |
Zhou, J. C. et al. Arbitrary wavefront uncertainty evaluation for the Shack–Hartmann wavefront sensor using physical optics propagation. Applied Physics Letters 123, 071102 (2023). doi: 10.1063/5.0163112 |
[36] |
Liang, J. J. et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10, 281-295 (2006). doi: 10.1109/TEVC.2005.857610 |
[37] |
Dai, G. M. Modal wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions. Journal of the Optical Society of America A 13, 1218-1225 (1996). doi: 10.1364/JOSAA.13.001218 |
[38] |
Chernyshov, A. et al. Calibration of a Shack-Hartmann sensor for absolute measurements of wavefronts. Applied Optics 44, 6419-6425 (2005). doi: 10.1364/AO.44.006419 |