[1] Gu, D. D. et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms. International Materials Reviews 57, 133-164 (2012). doi: 10.1179/1743280411Y.0000000014
[2] Tan, J. H. K., Sing S. L. & Yeong W. Y. Microstructure modelling for metallic additive manufacturing: a review. Virtual and Physical Prototyping 15, 87-105 (2020). doi: 10.1080/17452759.2019.1677345
[3] Goh, G. D., Sing, S. L. & Yeong, W. Y. A review on machine learning in 3D printing: applications, potential, and challenges. Artificial Intelligence Review 54, 63-94 (2020). doi: 10.1007/s10462-020-09876-9
[4] Niaki, M. K., Torabi, S. A. & Nonino, F. Why manufacturers adopt additive manufacturing technologies: the role of sustainability. Journal of Cleaner Production 222, 381-392 (2019). doi: 10.1016/j.jclepro.2019.03.019
[5] Kaur, M. & Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering: C 102, 844-862 (2019). doi: 10.1016/j.msec.2019.04.064
[6] Attar, H. et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Materials Science and Engineering: A 593, 170-177 (2014). doi: 10.1016/j.msea.2013.11.038
[7] Van Hooreweder, B. et al. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting. Acta Biomaterialia 47, 193-202 (2017). doi: 10.1016/j.actbio.2016.10.005
[8] Bruschi, S. et al. Influence of the machining parameters and cooling strategies on the wear behavior of wrought and additive manufactured Ti6Al4V for biomedical applications. Tribology International 102, 133-142 (2016). doi: 10.1016/j.triboint.2016.05.036
[9] Fischer, M. et al. In situ elaboration of a binary Ti-26Nb alloy by selective laser melting of elemental titanium and niobium mixed powders. Materials Science and Engineering: C 62, 852-859 (2016). doi: 10.1016/j.msec.2016.02.033
[10] Zhang, F. Y. et al. Novel nucleation mechanisms through satelliting in direct metal deposition of Ti-15Mo. Materials Letters 213, 197-200 (2018). doi: 10.1016/j.matlet.2017.11.036
[11] Kang, N. et al. Microstructure and tensile properties of Ti-Mo alloys manufactured via using laser powder bed fusion. Journal of Alloys and Compounds 771, 877-884 (2019). doi: 10.1016/j.jallcom.2018.09.008
[12] Sing, S. L., Yeong, W. Y. & Wiria, F. E. Selective laser melting of titanium alloy with 50 wt% tantalum: microstructure and mechanical properties. Journal of Alloys and Compounds 660, 461-470 (2016). doi: 10.1016/j.jallcom.2015.11.141
[13] Yan, L. M. et al. Improved mechanical properties of the new Ti-15Ta-xZr alloys fabricated by selective laser melting for biomedical application. Journal of Alloys and Compounds 688, 156-162 (2016). doi: 10.1016/j.jallcom.2016.07.002
[14] Li, Y. C. et al. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications. Acta Biomaterialia 87, 273-284 (2019). doi: 10.1016/j.actbio.2019.01.051
[15] Fu, J. et al. Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility. Acta Biomaterialia 17, 56-67 (2015). doi: 10.1016/j.actbio.2015.02.001
[16] Kang, N. et al. Selective laser melting of low modulus Ti-Mo alloy: α/β heterogeneous conchoidal structure. Materials Letters 267, 127544 (2020). doi: 10.1016/j.matlet.2020.127544
[17] Kang, N. et al. On the effect of the thermal cycle during the directed energy deposition application to the in-situ production of a Ti-Mo alloy functionally graded structure. Additive Manufacturing 31, 100911 (2020). doi: 10.1016/j.addma.2019.100911
[18] Jang, T. S. et al. Powder based additive manufacturing for biomedical application of titanium and its alloys: a review. Biomedical Engineering Letters 10, 505-516 (2020). doi: 10.1007/s13534-020-00177-2
[19] Kang, N. et al. On the texture, phase and tensile properties of commercially pure Ti produced via selective laser melting assisted by static magnetic field. Materials Science and Engineering: C 70, 405-407 (2017). doi: 10.1016/j.msec.2016.09.011
[20] Shipley, H. et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review. International Journal of Machine Tools and Manufacture 128, 1-20 (2018). doi: 10.1016/j.ijmachtools.2018.01.003
[21] Kok, Y. et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Materials & Design 139, 565-586 (2018). doi: 10.1016/j.matdes.2017.11.021
[22] Carroll, B. E., Palmer, T. A. & Beese, A. M. Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Materialia 87, 309-320 (2015). doi: 10.1016/j.actamat.2014.12.054
[23] Zhao, Z. et al. Formation mechanism of the α variant and its influence on the tensile properties of laser solid formed Ti-6Al-4V titanium alloy. Materials Science and Engineering: A 691, 16-24 (2017). doi: 10.1016/j.msea.2017.03.035
[24] Ren, Y. M. et al. Microstructure and deformation behavior of Ti-6Al-4V alloy by high-power laser solid forming. Acta Materialia 132, 82-95 (2017). doi: 10.1016/j.actamat.2017.04.026
[25] Zhao, Z. et al. Achieving superior ductility for laser solid formed extra low interstitial Ti-6Al-4V titanium alloy through equiaxial alpha microstructure. Scripta Materialia 146, 187-191 (2018). doi: 10.1016/j.scriptamat.2017.11.021
[26] Baker, H. “ASM Handbook, Volume 3: Alloy Phase Diagrams,” 10th Edition, ASM International, Materials Park, 1992. doi: 10.1007/bf02882180
[27] Mantri, S. A. & Banerjee, R. Microstructure and micro-texture evolution of additively manufactured β-Ti alloys. Additive Manufacturing 23, 86-98 (2018). doi: 10.1016/j.addma.2018.07.013
[28] Cardoso, F. F. et al. Ti-Mo alloys employed as biomaterials: effects of composition and aging heat treatment on microstructure and mechanical behavior. Journal of the Mechanical Behavior of Biomedical Materials 32, 31-38 (2014). doi: 10.1016/j.jmbbm.2013.11.021
[29] Alimardani, M., Toyserkani, E. & Huissoon, J. P. A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process. Optics and Lasers in Engineering 45, 1115-1130 (2007). doi: 10.1016/j.optlaseng.2007.06.010
[30] Zhang, F. Y. et al. Microstructure and mechanical properties of Ti-2Al alloyed with Mo formed in laser additive manufacture. Journal of Alloys and Compounds 727, 821-831 (2017). doi: 10.1016/j.jallcom.2017.07.324
[31] Xu, J. W. et al. Static globularization mechanism of Ti-17 alloy during heat treatment. Journal of Alloys and Compounds 736, 99-107 (2018). doi: 10.1016/j.jallcom.2017.11.117