[1] Melchior, H., Fisher, M. B. & Arams, F. R. Photodetectors for optical communication systems. Proceedings of the IEEE 58, 1466-1486 (1970). doi: 10.1109/PROC.1970.7972
[2] Tan, C. L. & Mohseni, H. Emerging technologies for high performance infrared detectors. Nanophotonics 7, 169-197 (2018). doi: 10.1515/nanoph-2017-0061
[3] Rogalski, A. Infrared detectors: an overview. Infrared Physics & Technology 43, 187-210 (2002).
[4] Wen, Z. Y. et al. Broadband up‐conversion mid‐infrared time‐stretch spectroscopy. Laser & Photonics Reviews 18, 2300630 (2024).
[5] Hashemi Amiri, S. E. et al. Growth of InGaAsP alloy nanowires for emission from visible to mid-infrared wavelengths. ECS Meeting Abstracts MA2015-02, 1174 (2015).
[6] Katzir, E. et al. Tunable inkjet printed hybrid carbon nanotubes/nanocrystals light sensor. Sensors and Actuators B: Chemical 196, 112-116 (2014). doi: 10.1016/j.snb.2014.01.113
[7] Lou, Z. & Shen, G. Z. Flexible photodetectors based on 1D inorganic nanostructures. Advanced Science 3, 1500287 (2016). doi: 10.1002/advs.201500287
[8] Wu, E. P. et al. In situ fabrication of 2D WS2/Si type-ii heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 6, 565-572 (2019). doi: 10.1021/acsphotonics.8b01675
[9] Dong, T., Simões, J. & Yang, Z. C. Flexible photodetector based on 2D materials: processing, architectures, and applications. Advanced Materials Interfaces 7, 1901657 (2020). doi: 10.1002/admi.201901657
[10] Mak, K. F. et al. Optical spectroscopy of graphene: from the far infrared to the ultraviolet. Solid State Communications 152, 1341-1349 (2012). doi: 10.1016/j.ssc.2012.04.064
[11] Liu, C. H. et al. Graphene photodetectors with ultra-broadband and high responsivity at room temperature. Nature Nanotechnology 9, 273-278 (2014). doi: 10.1038/nnano.2014.31
[12] Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nature Photonics 2, 219-225 (2008). doi: 10.1038/nphoton.2008.47
[13] Balling, P. & Schou, J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Reports on Progress in Physics 76, 036502 (2013). doi: 10.1088/0034-4885/76/3/036502
[14] Mur, J. et al. Ultra-fast laser-based surface engineering of conductive thin films. Applied Surface Science 509, 144911 (2020). doi: 10.1016/j.apsusc.2019.144911
[15] Sfregola, F. A. et al. Influence of working parameters on multi-shot femtosecond laser surface ablation of lithium niobate. Optics & Laser Technology 177, 111067 (2024).
[16] Shin, H. & Kim, D. Cutting thin glass by femtosecond laser ablation. Optics & Laser Technology 102, 1-11 (2018).
[17] Her, T. H. et al. Microstructuring of silicon with femtosecond laser pulses. Applied Physics Letters 73, 1673-1675 (1998). doi: 10.1063/1.122241
[18] Wu, C. et al. Near-unity below-band-gap absorption by microstructured silicon. Applied Physics Letters 78, 1850-1852 (2001). doi: 10.1063/1.1358846
[19] Bonse, J. et al. Femtosecond laser ablation of silicon-modification thresholds and morphology. Applied Physics A 74, 19-25 (2002). doi: 10.1007/s003390100893
[20] Halbwax, M. et al. Micro and nano-structuration of silicon by femtosecond laser: Application to silicon photovoltaic cells fabrication. Thin Solid Films 516, 6791-6795 (2008). doi: 10.1016/j.tsf.2007.12.117
[21] Jiang, J. et al. Mechanism of optical absorption enhancement of surface textured black silicon. Journal of Materials Science: Materials in Electronics 24, 463-466 (2013). doi: 10.1007/s10854-012-0756-z
[22] Liu, H. et al. Micro/nanostructures for light trapping in monocrystalline silicon solar cells. Journal of Nanomaterials 2022, 8139174 (2022). doi: 10.1155/2022/8139174
[23] Sun, H. B. et al. Mid-long wavelength infrared absorptance of hyperdoped silicon via femtosecond laser microstructuring. Optics Express 30, 1808-1817 (2022). doi: 10.1364/OE.446283
[24] Wang, M. et al. Mid-and far-infrared localized surface plasmon resonances in chalcogen-hyperdoped silicon. Nanoscale 14, 2826-2836 (2022). doi: 10.1039/D1NR07274A
[25] Tansel, T. & Aydin, O. Long infrared detector based on Se-hyperdoped black silicon. Journal of Physics D: Applied Physics 57, 295103 (2024). doi: 10.1088/1361-6463/ad3b08
[26] Phillips, K. C. et al. Ultrafast laser processing of materials: a review. Advances in Optics and Photonics 7, 684-712 (2015). doi: 10.1364/AOP.7.000684
[27] Liu, X. G. et al. Black silicon: fabrication methods, properties and solar energy applications. Energy & Environmental Science 7, 3223-3263 (2014).
[28] Liu, X. L. et al. Perspectives on black silicon in semiconductor manufacturing: Experimental comparison of plasma etching, MACE, and Fs-laser etching. IEEE Transactions on Semiconductor Manufacturing 35, 504-510 (2022). doi: 10.1109/TSM.2022.3190630
[29] Calvani, P. et al. Black diamond for solar energy conversion. Carbon 105, 401-407 (2016). doi: 10.1016/j.carbon.2016.04.017
[30] Girolami, M. et al. Impact of laser wavelength on the optical and electronic properties of black diamond. Physica Status Solidi (A) 214, 1700250 (2017 doi: 10.1002/pssa.201700250
[31] Sun, J. et al. Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser. Review of Scientific Instruments 87, 123101 (2016). doi: 10.1063/1.4968041
[32] Ding, J. Y. et al. Quartz tuning fork-based photodetector for mid-infrared laser spectroscopy. Applied Physics B 124, 78 (2018).
[33] Li, J. S. et al. Piezoelectric effect-based detector for spectroscopic application. Optics and Lasers in Engineering 115, 141-148 (2019). doi: 10.1016/j.optlaseng.2018.11.020
[34] Ma, Y. F. et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Optics Express 26, 32103-32110 (2018). doi: 10.1364/OE.26.032103
[35] Lord, H. W. & Shulman, Y. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids 15, 299-309 (1967). doi: 10.1016/0022-5096(67)90024-5
[36] Green, A. E. & Lindsay, K. A. Thermoelasticity. Journal of elasticity 2, 1-7 (1972). doi: 10.1007/BF00045689
[37] Chandrasekharaiah, D. S. A generalized linear thermoelasticity theory for piezoelectric media. Acta Mechanica 71, 39-49 (1988). doi: 10.1007/BF01173936
[38] Saigusa, Y. Quartz-based piezoelectric materials. in Advanced Piezoelectric Materials 2nd edn (ed Uchino, K. ) (Amsterdam: Elsevier, 2017), 197-233 doi: 10.1016/B978-0-08-102135-4.00005-9.
[39] Calabrese, E. & Fowler, W. B. Electronic energy-band structure of α quartz. Physical Review B 18, 2888-2896 (1978). doi: 10.1103/PhysRevB.18.2888
[40] He, M. Y. et al. Fundamental infrared absorption features of α-quartz: an unpolarized single-crystal absorption infrared spectroscopic study. Vibrational Spectroscopy 101, 52-63 (2019). doi: 10.1016/j.vibspec.2019.02.003
[41] Girolami, M. et al. Femtosecond-laser nanostructuring of black diamond films under different gas environments. Materials 13, 5761 (2020) doi: 10. 3390/ma13245761.
[42] Ashkenasi, D. et al. Laser processing of sapphire with picosecond and sub-picosecond pulses. Applied Surface Science 120, 65-80 (1997). doi: 10.1016/S0169-4332(97)00218-3
[43] Santhosh, S. et al. Effect of ablation rate on the microstructure and electrochromic properties of pulsed-laser-deposited molybdenum oxide thin films. Langmuir 33, 19-33 (2017). doi: 10.1021/acs.langmuir.6b02940
[44] Gao, Y. C. et al. First-principles research on mechanism of sub-band absorption of amorphous silicon induced by ultrafast laser irradiation. Results in Physics 31, 104941 (2021). doi: 10.1016/j.rinp.2021.104941
[45] Vorobyev, A. Y. & Guo, C. L. Direct creation of black silicon using femtosecond laser pulses. Applied Surface Science 257, 7291-7294 (2011). doi: 10.1016/j.apsusc.2011.03.106
[46] Amalathas, A. P. & Alkaisi, M. M. Nanostructures for light trapping in thin film solar cells. Micromachines 10, 619 (2019). doi: 10.3390/mi10090619
[47] De Palo, R. et al. Threshold fluence and incubation during multi-pulse ultrafast laser ablation of quartz. Optics Express 30, 44908-44917 (2022). doi: 10.1364/OE.475592
[48] Heaney, J. B., Stewart, K. P. & Hass, G. Transmittance and reflectance of crystalline quartz and high- and low-water content fused silica from 2 μm to 1 mm. Applied Optics 22, 4069-4072 (1983). doi: 10.1364/AO.22.004069
[49] Lin, H. Y. et al. Application of standard and custom quartz tuning forks for quartz-enhanced photoacoustic spectroscopy gas sensing. Applied Spectroscopy Reviews 58, 562-584 (2023). doi: 10.1080/05704928.2022.2070917
[50] Hu, L. E. et al. Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing. Optics Letters 45, 1894-1897 (2020). doi: 10.1364/OL.388754
[51] Olivieri, M. et al. Influence of air pressure on the resonance properties of a T-shaped quartz tuning fork coupled with resonator tubes. Applied Sciences 11, 7974 (2021). doi: 10.3390/app11177974
[52] Hao, Z. L., Erbil, A. & Ayazi, F. An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations. Sensors and Actuators A: Physical 109, 156-164 (2003). doi: 10.1016/j.sna.2003.09.037
[53] Giglio, M. et al. Allan deviation plot as a tool for quartz-enhanced photoacoustic sensors noise analysis. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 63, 555-560 (2016). doi: 10.1109/TUFFC.2015.2495013
[54] Patimisco, P. et al. Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy. Optics Express 24, 25943-25954 (2016). doi: 10.1364/OE.24.025943