[1] Schulte, H. & Rack, A. Optical delay line memory. IEEE J. Quantum Electron. 3, 246 (1967). doi: 10.1109/JQE.1967.1074502
[2] Liu, J. M. & Chen, Y. C. Optical flip-flop. Electron. Lett. 21, 236–238 (1985).
[3] Koffman, I. et al. A fiber optic recirculating memory loop for radar applications. Microw. Optical Technol. Lett. 1, 232–235 (1988). doi: 10.1002/mop.4650010703
[4] Dietrich, E. et al. BER measurements in random access fibre loop optical memory. Electron. Lett. 27, 1585–1586 (1991). doi: 10.1049/el:19910992
[5] Avramopoulos, H. & Whitaker, N. A. Addressable fiber-loop memory. Opt. Lett. 18, 22–24 (1993). doi: 10.1364/OL.18.000022
[6] Hunter, D. K., Chia, M. C. & Andonovic, I. Buffering in optical packet switches. J. Lightwave Technol. 16, 2081–2091 (1998). doi: 10.1109/50.736577
[7] Yamada, Y., Sasayama, K. & Habara K. Proc. 22nd European Conference on Optical Communication (IEEE, Oslo, Norway, 1996).
[8] Bowers, J., Burmeister, E. & Blumenthal, D. Proc. 2006 International Conference on Photonics in Switching (IEEE, Heraklion, Greece, 2006).
[9] Burmeister, E. F., Blumenthal, D. J. & Bowers, J. E. A comparison of optical buffering technologies. Optical Switching Netw. 5, 10–18 (2008). doi: 10.1016/j.osn.2007.07.001
[10] Sedgwick, F. G. et al. Storage-bit-rate product in slow-light optical buffers. Electron. Lett. 41, 1347–1348 (2005). doi: 10.1049/el:20052258
[11] Tucker, R. S., Ku, P. C. & Chang-Hasnain, C. J. Slow-light optical buffers: capabilities and fundamental limitations. J. Lightwave Technol. 23, 4046–4066 (2005). doi: 10.1109/JLT.2005.853125
[12] Apostolopoulos, D. et al. Contention resolution for burst-mode traffic using integrated SOA-MZI gate arrays and self-resetting optical flip-flops. IEEE Photonics Technol. Lett. 20, 2024–2026 (2008). doi: 10.1109/LPT.2008.2005909
[13] Zakynthinos, P. et al. Proc. 2008 34th European Conference on Optical Communication (IEEE, Brussels, Belgium, 2008).
[14] Stojanović, V. et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited]. Opt. Express 26, 13106–13121 (2018). doi: 10.1364/OE.26.013106
[15] Booth, B. et al. On-board optical interconnection. CTR III TWG Report #3, MIT Microphotonics Center, April 2013 IEEE/OSA J. Opt. Commun. Netw. https://mphotonics.mit.edu/docman/ctr/ctr-3/short-reach-interconnect-twg/722-on-board-optical-interconnection-digest-1/file.
[16] Bohn, M. et al. Proc. OSA Optical Fiber Communication Conference (OSA, San Diego, CA, USA, 2019).
[17] Zhao, L. et al. Proc. IEEE Symposium on High-Performance Computer Architecture (HPCA), Workshop on Chip Multiprocessor Memory Systems and Interconnects 2007 (IEEE, Phoenix, AZ, USA, 2007).
[18] Oracle's SPARC T5-2, SPARC T5-4, SPARC T5-8, and SPARC T5-1B Server Architecture. White Paper, Feb 2014. http://www.oracle.com/technetwork/server-storage/sun-sparc-enterprise/documentation/o13-024-sparc-t5-architecture-1920540.pdf.
[19] Borkar, S. & Chien, A. A. The future of microprocessors. Commun. ACM 54, 67–77 (2011). doi: 10.1145/1941487.1941507
[20] McKee, S. A. Proc. 1st Conference on Computing Frontiers (ACM, Ischia, Italy, 2004).
[21] Hasler, J. & Marr, B. Finding a roadmap to achieve large neuromorphic hardware systems. Front. Neurosci. 7, 118 (2013). doi: 10.3389/fnins.2013.00118
[22] Pleros, N. et al. Optical static RAM cell. IEEE Photonics Technol. Lett. 21, 73–75 (2009). doi: 10.1109/LPT.2008.2008444
[23] Fitsios, D. et al. Dual-wavelength bit input optical RAM with three SOA-XGM switches. IEEE Photonics Technol. Lett. 24, 1142–1144 (2012). doi: 10.1109/LPT.2012.2197192
[24] Vagionas, C. et al. Optical RAM and flip-flops using bit-input wavelength diversity and SOA-XGM switches. J. Lightwave Technol. 30, 3003–3009 (2012). doi: 10.1109/JLT.2012.2210696
[25] Pitris, S. et al. WDM-enabled optical RAM at 5 Gb/s using a monolithic InP flip-flop chip. IEEE Photonics. Journal 8, 0600207 (2016).
[26] Vyrsokinos, K. et al. Proc. 37th European Conference and Exposition on Optical Communications (OSA, Geneva, Switzerland, 2011).
[27] Bakopoulos, P. et al. All-optical T-flip-flop using a single SOA-MZI-based latching element. IEEE Photonics Technol. Lett. 24, 748–750 (2012). doi: 10.1109/LPT.2012.2187779
[28] Hill, M. T. et al. All-optical flip-flop based on coupled laser diodes. IEEE J. Quantum Electron. 37, 405–413 (2001). doi: 10.1109/3.910450
[29] Zhang, S. X. et al. Ring-laser optical flip-flop memory with single active element. IEEE J. Sel. Top. Quantum Electron. 10, 1093–1100 (2004). doi: 10.1109/JSTQE.2004.835292
[30] Hill, M. T. et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004). doi: 10.1038/nature03045
[31] Trita, A. et al. All-optical toggle flip-flop based on monolithic semiconductor ring laser. IEEE Photonics Technol. Lett. 26, 96–99 (2014). doi: 10.1109/LPT.2013.2289976
[32] Wang, J. et al. All-optical clocked flip-flops and binary counting operation using SOA-based SR latch and logic gates. IEEE J. Sel. Top. Quantum Electron. 16, 1486–1494 (2010). doi: 10.1109/JSTQE.2009.2039199
[33] Trita, A. et al. Monolithic all-optical set-reset flip-flop operating at 10 Gb/s. IEEE Photonics Technol. Lett. 25, 2408–2411 (2013). doi: 10.1109/LPT.2013.2287300
[34] Clavero, R. et al. All-optical flip-flop based on a single SOA-MZI. IEEE Photonics Technol. Lett. 17, 843–845 (2005). doi: 10.1109/LPT.2004.842797
[35] Liu, L. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nat. Photonics 4, 182–187 (2010). doi: 10.1038/nphoton.2009.268
[36] Naito, Y. et al. Investigation of all-optical latching operation of a monolithically integrated SOA-MZI with a feedback loop. Opt. Express 20, B339–B349 (2012). doi: 10.1364/OE.20.00B339
[37] Chen, C. H. et al. All-optical memory based on injection-locking bistability in photonic crystal lasers. Opt. Express 19, 3387–3395 (2011). doi: 10.1364/OE.19.003387
[38] Nozaki, K. et al. Ultralow-power all-optical RAM based on nanocavities. Nat. Photonics 6, 248–252 (2012). doi: 10.1038/nphoton.2012.2
[39] Kuramochi, E. et al. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat. Photonics 8, 474–481 (2014). doi: 10.1038/nphoton.2014.93
[40] Sakaguchi, J., Katayama, T. & Kawaguchi, H. All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals. Opt. Express 18, 12362–12370 (2010). doi: 10.1364/OE.18.012362
[41] Katayama, T., Ooi, T. & Kawaguchi, H. Experimental demonstration of multi-bit optical buffer memory using 1.55-μm polarization bistable vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 45, 1495–1504 (2009). doi: 10.1109/JQE.2009.2029067
[42] Fitsios, D. et al. ultra-compact III‒V-on-Si photonic crystal memory for flip-flop operation at 5 Gb/s. Opt. Express 24, 4270–4277 (2016). doi: 10.1364/OE.24.004270
[43] Alexoudi, T. et al. III–V-on-Si photonic crystal nanocavity laser technology for optical static random access memories. IEEE J. Sel. Top. Quantum Electron. 22, 4901410 (2016). doi: 10.1109/JSTQE.2016.2593636
[44] Ponzini, F. et al. Proc. 2005 IEEE/LEOS Workshop on Fibres and Optical Passive Components (IEEE, Palermo, Italy, 2005).
[45] Malacarne, A., Bogoni, A. & Poti, L. Erbium–ytterbium-doped fiber-based optical flip-flop. IEEE Photonics Technol. Lett. 19, 904–906 (2007). doi: 10.1109/LPT.2007.897553
[46] Poti, L. Erbium-based photonic flip-flop memories: model and experimental validation. IEEE J. Quantum Electron. 44, 473–479 (2008). doi: 10.1109/JQE.2007.914297
[47] Gregorkiewicz, T. et al. Er-doped electro-optical memory element for 1.5-μm silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 1539–1544 (2006). doi: 10.1109/JSTQE.2006.884062
[48] Berrettini, G., Potì, L. & Bogoni, A. Optical dynamic RAM for all-optical digital processing. IEEE Photonics Technol. Lett. 23, 685–687 (2011). doi: 10.1109/LPT.2011.2123087
[49] Berrettini, G. et al. All-optical digital circuits exploiting SOA-based loop memories. IEEE J. Sel. Top. Quantum Electron. 18, 847–858 (2012). doi: 10.1109/JSTQE.2011.2138120
[50] Pernice, W. H. P. & Bhaskaran, H. Photonic non-volatile memories using phase change materials. Appl. Phys. Lett. 101, 171101 (2012). doi: 10.1063/1.4758996
[51] Li, X. et al. Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell. Optica 6, 1–6 (2019). doi: 10.1364/OPTICA.6.000001
[52] Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9, 725–732 (2015). doi: 10.1038/nphoton.2015.182
[53] Zhang, Y. F. et al. Proc. Conference on Lasers and Electro-Optics (OSA, San Jose, CA, USA, 2017).
[54] Cheng, Z. G. et al. Device-level photonic memories and logic applications using phase-change materials. Adv. Mater. 30, 1802435 (2018). doi: 10.1002/adma.201802435
[55] Miller, K. J., Haglund, R. F. & Weiss, S. M. Optical phase change materials in integrated silicon photonic devices: review. Optical Mater. Express 8, 2415–2429 (2018). doi: 10.1364/OME.8.002415
[56] Fitsios, D. et al. Memory speed analysis of optical RAM and optical flip-flop circuits based on coupled SOA-MZI gates. IEEE J. Sel. Top. Quantum Electron. 18, 1006–1015 (2012). doi: 10.1109/JSTQE.2011.2150201
[57] Fitsios, D. et al. Proc. IEEE Photonic Society 24th Annual Meeting (IEEE, Arlington, VA, USA, 2011).
[58] Huffaker, D. L. et al. Optical memory using a vertical-cavity surface emitting laser. IEEE Photonics Technol. Lett. 3, 1064–1066 (1991). doi: 10.1109/68.118001
[59] Lee, S. H. et al. 1-GHz all-optical flip-flop operation of conventional cylindrical-shaped single-mode VCSELs under low-power optical injection. IEEE Photonics Technol. Lett. 22, 1759–1761 (2010). doi: 10.1109/LPT.2010.2078803
[60] Marconi, M., Barland, S. & Giudici, M. Nonvolatile polarization control of a bistable VCSEL. Opt. Express 20, B299–B22305 (2012). doi: 10.1364/OE.20.00B299
[61] Hayashi, D. et al. Bit error rate measurements of all-optical flip-flop operations of a 1.55-μm polarization bistable VCSEL. J. Lightwave Technol. 32, 2671–2677 (2014). doi: 10.1109/JLT.2014.2332535
[62] Sakaguchi, J., Katayama, T. & Kawaguchi, H. High switching-speed operation of optical memory based on polarization bistable vertical-cavity surface-emitting laser. IEEE J. Quantum Electron. 46, 1526–1534 (2010). doi: 10.1109/JQE.2010.2052590
[63] Kawaguchi, H. in Advanced Lasers (eds Shulika, O. & Sukhoivanov, I.) 1–17 (Springer, Dordrecht, 2015).
[64] Hill, M. T. et al. Fast optical flip-flop by use of Mach-Zehnder interferometers. Microw. Optical Technol. Lett. 31, 411–415 (2001). doi: 10.1002/mop.10050
[65] Tangdiongga, E. et al. Optical flip-flop based on two-coupled mode-locked ring lasers. IEEE Photonics Technol. Lett. 17, 208–210 (2005). doi: 10.1109/LPT.2004.837742
[66] Dorren, H. & J., S. et al. Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all-optical flip-flop memories. IEEE J. Quantum Electron. 39, 141–148 (2003). doi: 10.1109/JQE.2002.806200
[67] Liu, Y. et al. All-optical flip-flop memory based on two coupled polarisation switches. Electron. Lett. 38, 904–906 (2002). doi: 10.1049/el:20020640
[68] Liu, Y. et al. Packaged and hybrid integrated all-optical flip-flop memory. Electron. Lett. 42, 1399–1400 (2006). doi: 10.1049/el:20062312
[69] Wang, J. et al. SOA fiber ring laser-based three-state optical memory. IEEE Photonics Technol. Lett. 20, 1697–1699 (2008). doi: 10.1109/LPT.2008.2003411
[70] Tsakyridis, A. et al. 10 Gb/s optical random access memory (RAM) cell. Opt. Lett. 44, 1821–1824 (2019). doi: 10.1364/OL.44.001821
[71] Maywar, D. N., Agrawal, G. P. & Nakano, Y. Robust optical control of an optical-amplifier-based flip–flop. Opt. Express 6, 75–80 (2000). doi: 10.1364/OE.6.000075
[72] D'Oosterlinck, W. et al. All-Optical flip-flop operation using a SOA and DFB laser diode optical feedback combination. Opt. Express 15, 6190–6199 (2007). doi: 10.1364/OE.15.006190
[73] Johnson, N. C., Harrison, J. A. & Blow, K. J. Proc. 2006 International Conference on Photonics in Switching (IEEE, Heraklion, Greece, 2006).
[74] Wang, Z. R. et al. Storing 2 bits of information in a novel single semiconductor microring laser memory cell. IEEE Photonics Technol. Lett. 20, 1228–1230 (2008). doi: 10.1109/LPT.2008.926011
[75] Yuan, G. H. et al. Theoretical and experimental studies on bistability in semiconductor ring lasers with two optical injections. IEEE J. Sel. Top. Quantum Electron. 14, 903–910 (2008). doi: 10.1109/JSTQE.2008.918058
[76] Kuramochi, E. et al. Ultralow bias power all-optical photonic crystal memory realized with systematically tuned L3 nanocavity. Appl. Phys. Lett. 107, 221101 (2015). doi: 10.1063/1.4936372
[77] Alexoudi, T. et al. Proc. Optical Fiber Communication Conference (OSA, Anaheim, CA, USA, 2016).
[78] Raineri, F. et al. Proc. 10th Conference on Lasers and Electro-Optics Pacific Rim (IEEE, Kyoto, Japan, 2013).
[79] Lengle, K. et al. Modulation contrast optimization for wavelength conversion of a 20 Gbit/s data signal in hybrid InP/SOI photonic crystal nanocavity. Opt. Lett. 39, 2298–2301 (2014). doi: 10.1364/OL.39.002298
[80] Crosnier, G. et al. Proc. SPIE Photonics West (SPIE, San Francisco, CA, 2016).
[81] Takenaka, M. et al. Realization of all-optical flip-flop using directionally coupled bistable laser diode. IEEE Photonics Technol. Lett. 16, 45–47 (2004). doi: 10.1109/LPT.2003.818900
[82] Takenaka, M., Raburn, M. & Nakano, Y. All-optical flip-flop multimode interference bistable laser diode. IEEE Photonics Technol. Lett. 17, 968–970 (2005). doi: 10.1109/LPT.2005.844322
[83] Takeda, K. et al. Polarization-insensitive all-optical flip-flop using tensile-strained multiple quantum wells. IEEE Photonics Technol. Lett. 20, 1851–1853 (2008). doi: 10.1109/LPT.2008.2004350
[84] Jiang, H. et al. All-optical flip-flop operation based on asymmetric active-multimode interferometer bi-stable laser diodes. Opt. Express 19, B119–B124 (2011). doi: 10.1364/OE.19.00B119
[85] Jeong, Y. D. et al. All-optical flip-flop based on the bistability of injection locked Fabry-Perot laser diode. Opt. Express 14, 4058–4063 (2006). doi: 10.1364/OE.14.004058
[86] Le Hoang, N. et al. All-optical flip-flop with high on-off contrast ratio using two injection-locked single-mode Fabry-Perot laser diodes. Opt. Express 15, 5166–5171 (2007). doi: 10.1364/OE.15.005166
[87] Huybrechts, K., Morthier, G. & Baets, R. Fast all-optical flip-flop based on a single distributed feedback laser diode. Opt. Express 16, 11405–11410 (2008). doi: 10.1364/OE.16.011405
[88] Kakitsuka, T. et al. Injection-locked flip-flop operation of a DBR laser. IEEE Photonics Technol. Lett. 23, 1261–1263 (2011). doi: 10.1109/LPT.2011.2159302
[89] Wu, Y. C. et al. All-optical flip-flop operation based on bistability in V-cavity laser. Opt. Express 24, 112507–112514 (2016).
[90] An, Y. et al. Proc. 2012 International Conference on Photonics in Switching (IEEE, Ajaccio, Corsica, France, 2012).
[91] Nakamura, S. et al. Proc. OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (IEEE, San Diego, CA, USA, 2008).
[92] Ponzini, F. et al. Proc. 31st European Conference on Optical Communication (ECOC '05), 25–29 Sept 2005 (ECOC, Glasgow, Scotland, 2005).
[93] Berrettini, G. et al. All-optical variable buffer based on semiconductor optical amplifier. IEEE J. Quantum Electron. 47, 510–516 (2011). doi: 10.1109/JQE.2010.2092752
[94] Cheng, Z. G. et al. On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017). doi: 10.1126/sciadv.1700160
[95] Chakraborty, I. et al. Toward fast neural computing using all-photonic phase change spiking neurons. Sci. Rep. 8, 12980 (2018). doi: 10.1038/s41598-018-31365-x
[96] Burr, G. W. et al. Overview of candidate device technologies for storage-class memory. IBM J. Res. Dev. 52, 449–464 (2008). doi: 10.1147/rd.524.0449
[97] Au, Y. Y., Bhaskaran, H. & Wright, C. D. Phase-change devices for simultaneous optical-electrical applications. Sci. Rep. 7, 9688 (2017). doi: 10.1038/s41598-017-10425-8
[98] Hosseini, P., Wright, C. D. & Bhaskaran, H. An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206–211 (2014). doi: 10.1038/nature13487
[99] Li, B. et al. Proc. 2009 International Conference on Photonics in Switching (IEEE, Pisa, Italy, 2009).
[100] Chen, A. et al. Emerging Nanoelectronic Devices (Wiley, Chichester, West Sussex, UK, 2015).
[101] Karl, E. et al. Proc. 2012 IEEE International Solid-State Circuits Conference (IEEE, San Francisco, CA, 2012).
[102] Maniotis, P. et al. Optical buffering for chip multiprocessors: a 16GHz optical cache memory architecture. J. Lightwave Technol. 31, 4175–4191 (2013). doi: 10.1109/JLT.2013.2290741
[103] Maniotis, P. et al. An optically-enabled chip–multiprocessor architecture using a single-level shared optical cache memory. Optical Switching Netw. 22, 54–68 (2016). doi: 10.1016/j.osn.2016.05.001
[104] Alexoudi, T. et al. Optical cache memory peripheral circuitry: row and column address selectors for optical static RAM banks. J. Lightwave Technol. 31, 4098–4110 (2013). doi: 10.1109/JLT.2013.2286529
[105] Alexoudi, T. et al. Optical RAM row access with WDM-enabled all-passive row/column decoders. IEEE Photonics Technol. Lett. 26, 671–674 (2014). doi: 10.1109/LPT.2014.2302854
[106] Alexoudi, T. et al. Optics in computing: from photonic network-on-chip to chip-to-chip interconnects and disintegrated architectures. J. Lightwave Technol. 37, 363–379 (2019). doi: 10.1109/JLT.2018.2875995
[107] Vagionas, C. et al. Integrated optical. Appl. Sci. 7, 700 (2017).
[108] Mourgias-Alexandris, G. et al. Optical content addressable memory matchline for 2-bit address look-up at 10 Gb/s. IEEE Photonics Technol. Lett. 30, 809–812 (2018). doi: 10.1109/LPT.2018.2817928
[109] Mourgias-Alexandris, G. et al. All-optical 10Gb/s ternary-CAM cell for routing look-up table applications. Opt. Express 26, 7555–7562 (2018). doi: 10.1364/OE.26.007555
[110] Zhou, J. Y., Cada, M. & Makino, T. All-optical bistable switching dynamics in 1.55-μm two-segment strained multiquantum-well distributed-feedback lasers. J. Lightwave Technol. 15, 342–355 (1997). doi: 10.1109/50.554387
[111] Jian, B. B. Proc. LEOS'96 9th Annual Meeting IEEE Lasers and Electro-Optics Society (IEEE, Boston, MA, USA, 1996).
[112] Farmakidis, N. et al. Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality. Sci. Adv. 5, eaaw2687 (2019). doi: 10.1126/sciadv.aaw2687
[113] Bohr, M. T. Nanotechnology goals and challenges for electronic applications. IEEE Trans. Nanotechnol. 1, 56–62 (2002). doi: 10.1109/TNANO.2002.1005426
[114] Mistry, M. et al. Proc. 2004 Symposium on VLSI Technology (IEEE, Honolulu, Hawaii, 2004).
[115] Zhang, K. et al. Proc. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference (IEEE, San Francisco, CA, USA, 2005).
[116] Hamzaoglu, F. et al. Proc. 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers (IEEE, San Francisco, CA, USA, 2008).
[117] Wang, Y. et al. Proc. 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers (IEEE, San Francisco, CA, USA, 2009).
[118] Karl, E. et al. Proc. 2015 IEEE International Solid-State Circuits Conference (IEEE, San Francisco, CA, USA, 2015).
[119] Chang, J. et al. Proc. 2017 IEEE International Solid-State Circuits Conference (IEEE, San Francisco, CA, USA, 2017).
[120] Miller, D. A. B. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol. 35, 346–396 (2017). doi: 10.1109/JLT.2017.2647779
[121] Abu-Rahma, M. & Anis, M. Nanometer Variation-Tolerant SRAM, Circuits and Statistical Design for Yield (Springer, New York, 2013).
[122] Molka, D., Hackenberg, D. & Schöne, R. Proc. Workshop on Memory Systems Performance and Correctness (ACM, Edinburgh, UK, 2014).
[123] Yu, S. M. & Chen, P. Y. Emerging memory technologies: recent trends and prospects. IEEE Solid-State Circuits Mag. 8, 43–46 (2016). doi: 10.1109/MSSC.2016.2546199
[124] Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015). doi: 10.1038/nature16454
[125] Sun, C. et al. A monolithically-integrated chip-to-chip optical link in bulk CMOS. IEEE J. Solid-State Circuits 50, 828–844 (2015). doi: 10.1109/JSSC.2014.2382101
[126] Zhang, C. et al. 8 × 8 × 40 Gbps fully integrated silicon photonic network on chip. Optica 3, 785–786 (2016). doi: 10.1364/OPTICA.3.000785
[127] Guo, Z. et al. A 23.6-Mb/mm2 SRAM in 10-nm FinFET technology with pulsed-pMOS TVC and stepped-WL for low-voltage applications. IEEE J. Solid-State Circuits 54, 210–216 (2019). doi: 10.1109/JSSC.2018.2861873
[128] Kitayama, K. et al. Proc. 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (IEEE, Los Angeles, USA, 2011).
[129] Pagiamtzis, K. & Sheikholeslami, A. Content-addressable memory (CAM) circuits and architectures: a tutorial and survey. IEEE J. Solid-State Circuits 41, 712–727 (2006). doi: 10.1109/JSSC.2005.864128
[130] Pitris, S. et al. An optical content addressable memory cell for address look-up at 10 Gb/s. IEEE Photonics Technol. Lett. 28, 1790–1793 (2016). doi: 10.1109/LPT.2016.2572299