[1] Bhargava, R. Infrared spectroscopic imaging: the next generation. Appl. Spectrosc. 66, 1091–1120 (2012). doi: 10.1366/12-06801
[2] Wetzel, D. L. & LeVine, S. M. Imaging molecular chemistry with infrared microscopy. Science 285, 1224–1225 (1999). doi: 10.1126/science.285.5431.1224
[3] Wrobel, T. P. & Bhargava, R. Infrared spectroscopic imaging advances as an analytical technology for biomedical sciences. Anal. Chem. 90, 1444–1463 (2018). doi: 10.1021/acs.analchem.7b05330
[4] Su, R. et al. Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics. Opt. Express 22, 15804–15819 (2014). doi: 10.1364/OE.22.015804
[5] Wang, Y., Wang, Y. & Le, H. Q. Multi-spectral mid-infrared laser stand-off imaging. Opt. Express 13, 6572–6586 (2005). doi: 10.1364/OPEX.13.006572
[6] van der Meer, F. D. et al. Multi- and hyperspectral geologic remote sensing: a review. Int. J. Appl. Earth Observation Geoinf. 14, 112–128 (2012). doi: 10.1016/j.jag.2011.08.002
[7] Chen, Y. Y. et al. Applications of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences—a review. Int. J. Mol. Sci. 16, 30223–30250 (2015). doi: 10.3390/ijms161226227
[8] Mintenig, S. M. et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 108, 365–372 (2017). doi: 10.1016/j.watres.2016.11.015
[9] Yeh, K. et al. Fast infrared chemical imaging with a quantum cascade laser. Anal. Chem. 87, 485–493 (2015). doi: 10.1021/ac5027513
[10] Borondics, F. et al. Supercontinuum-based Fourier transform infrared spectromicroscopy. Optica 5, 378–381 (2018). doi: 10.1364/OPTICA.5.000378
[11] Kilgus, J. et al. Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser. Opt. Express 26, 30644–30654 (2018). doi: 10.1364/OE.26.030644
[12] Rogalski, A. Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002). doi: 10.1016/S1350-4495(02)00140-8
[13] Lemos, G. B. et al. Quantum imaging with undetected photons. Nature 512, 409–412 (2014). doi: 10.1038/nature13586
[14] Kviatkovsky, I. et al. Microscopy with undetected photons in the mid-infrared. Preprint at https://arxiv.org/abs/2002.05960 (2020).
[15] Paterova, A. V. et al. Hyperspectral infrared microscopy with visible light. Preprint at https://arxiv.org/abs/2002.05956 (2020).
[16] Hanninen, A. M. et al. High-resolution infrared imaging of biological samples with third-order sum-frequency generation microscopy. Biomed. Opt. Express 9, 4807–4817 (2018). doi: 10.1364/BOE.9.004807
[17] Lee, E. S. & Lee, J. Y. High resolution cellular imaging with nonlinear optical infrared microscopy. Opt. Express 19, 1378–1384 (2011). doi: 10.1364/OE.19.001378
[18] Zhang, D. L. et al. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. Sci. Adv. 2, e1600521 (2016). doi: 10.1126/sciadv.1600521
[19] Samolis, P. D. & Sander, M. Y. Phase-sensitive lock-in detection for high-contrast mid-infrared photothermal imaging with sub-diffraction limited resolution. Opt. Express 27, 2643–2655 (2019). doi: 10.1364/OE.27.002643
[20] Bai, Y. R. et al. Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption. Sci. Adv. 5, eaav7127 (2019). doi: 10.1126/sciadv.aav7127
[21] Schnell, M. et al. All-digital histopathology by infrared-optical hybrid microscopy. Proc. Natl Acad. Sci. USA 117, 3388–3396 (2020). doi: 10.1073/pnas.1912400117
[22] Shi, J. H. et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nat. Photonics 13, 609–615 (2019). doi: 10.1038/s41566-019-0441-3
[23] Johnson, T. A. & Diddams, S. A. Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser. Appl. Phys. B 107, 31–39 (2012).
[24] Tidemand-Lichtenberg, P. et al. Mid-infrared upconversion spectroscopy. J. Optical Soc. Am. B 33, D28–D35 (2016). doi: 10.1364/JOSAB.33.000D28
[25] Junaid, S. et al. Mid-infrared upconversion based hyperspectral imaging. Opt. Express 26, 2203–2211 (2018). doi: 10.1364/OE.26.002203
[26] Gu, X. R. et al. Temporal and spectral control of single-photon frequency upconversion for pulsed radiation. Appl. Phys. Lett. 96, 131111 (2010). doi: 10.1063/1.3374330
[27] Thew, R. T., Zbinden, H. & Gisin, N. Tunable upconversion photon detector. Appl. Phys. Lett. 93, 071104 (2008). doi: 10.1063/1.2969067
[28] Watson, E. A. & Morris, G. M. Comparison of infrared upconversion methods for photon‐limited imaging. J. Appl. Phys. 67, 6075–6084 (1990). doi: 10.1063/1.345167
[29] Barh, A. et al. Parametric upconversion imaging and its applications. Adv. Opt. Photonics 11, 952–1019 (2019). doi: 10.1364/AOP.11.000952
[30] Junaid, S. et al. Video-rate, mid-infrared hyperspectral upconversion imaging. Optica 6, 702–708 (2019). doi: 10.1364/OPTICA.6.000702
[31] Fishman, D. A. et al. Sensitive mid-infrared detection in wide-bandgap semiconductors using extreme non-degenerate two-photon absorption. Nat. Photonics 5, 561–565 (2011). doi: 10.1038/nphoton.2011.168
[32] Hayat, A., Ginzburg, P. & Orenstein, M. Infrared single-photon detection by two-photon absorption in silicon. Phys. Rev. B 77, 125219 (2008). doi: 10.1103/PhysRevB.77.125219
[33] Pattanaik, H. S. et al. Three-dimensional IR imaging with uncooled GaN photodiodes using nondegenerate two-photon absorption. Opt. Express 24, 1196–1205 (2016). doi: 10.1364/OE.24.001196
[34] Pattanaik, H. Two-photon Absorption in Bulk Semiconductors and Quantum Well Structures and Its Applications. PhD thesis, University of Central Florida (2015).
[35] Cirloganu, C. Experimental and Theoretical Approaches to Characterization of Electronic Nonlinearities in Direct-gap Semiconductors. PhD thesis, University of Central Florida (2010).
[36] Cirloganu, C. M. et al. Extremely nondegenerate two-photon absorption in direct-gap semiconductors. Opt. Express 19, 22951–22960 (2011). doi: 10.1364/OE.19.022951
[37] Hutchings, D. C. & van Stryland, E. W. Nondegenerate two-photon absorption in zinc blende semiconductors. J. Optical Soc. Am. B 9, 2065–2074 (1992). doi: 10.1364/JOSAB.9.002065
[38] Sheik-Bahae, M. et al. Measurement of nondegenerate nonlinearities using a two-color Z scan. Opt. Lett. 17, 258–260 (1992). doi: 10.1364/OL.17.000258
[39] Wherrett, B. S. Scaling rules for multiphoton interband absorption in semiconductors. J. Optical Soc. Am. B 1, 67–72 (1984). doi: 10.1364/JOSAB.1.000067
[40] Sheik-Bahae, M. et al. Dispersion of bound electron nonlinear refraction in solids. IEEE J. Quantum Electron. 27, 1296–1309 (1991). doi: 10.1109/3.89946
[41] Dinu, M. Dispersion of phonon-assisted nonresonant third-order nonlinearities. IEEE J. Quantum Electron. 39, 1498–1503 (2003). doi: 10.1109/JQE.2003.818277
[42] Garcia, H. & Kalyanaraman, R. Phonon-assisted two-photon absorption in the presence of a dc-field: the nonlinear Franz–Keldysh effect in indirect gap semiconductors. J. Phys. B: At., Mol. Optical Phys. 39, 2737–2746 (2006). doi: 10.1088/0953-4075/39/12/009
[43] Bristow, A. D., Rotenberg, N. & van Driel, H. M. Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl. Phys. Lett. 90, 191104 (2007). doi: 10.1063/1.2737359
[44] Zhang, Y. B. et al. Non-degenerate two-photon absorption in silicon waveguides: analytical and experimental study. Opt. Express 23, 17101–17110 (2015). doi: 10.1364/OE.23.017101
[45] Poulvellarie, N. et al. Highly nondegenerate two-photon absorption in silicon wire waveguides. Phys. Rev. Appl. 10, 024033 (2018). doi: 10.1103/PhysRevApplied.10.024033
[46] Cox, N., Hagan, D. J. & van Stryland, E. W. Extremely nondegenerate two-photon absorption in silicon (conference presentation). In Proceedings of PSIE 10916, Ultrafast Phenomena and Nanophotonics XXIII (SPIE, San Francisco, 2019).
[47] Wallace, V. M. et al. Revisiting the aqueous solutions of dimethyl sulfoxide by spectroscopy in the mid- and near-infrared: experiments and car–parrinello simulations. J. Phys. Chem. B 119, 14780–14789 (2015). doi: 10.1021/acs.jpcb.5b09196
[48] Tsang, H. K. et al. High sensitivity autocorrelation using two-photon absorption in InGaAsP waveguides. Electron. Lett. 31, 1773–1775 (1995). doi: 10.1049/el:19951185
[49] Panasenko, D. & Fainman, Y. Interferometric correlation of infrared femtosecond pulses with two-photon conductivity in a silicon CCD. Appl. Opt. 41, 3748–3752 (2002). doi: 10.1364/AO.41.003748
[50] Hanninen, A. M. & Potma, E. O. Nonlinear optical microscopy with achromatic lenses extending from the visible to the mid-infrared. APL Photonics 4, 080801 (2019). doi: 10.1063/1.5111406