[1] Lannoo, M. & Bourgoin, J. C. Point Defects in Semiconductors Ⅰ: Theoretical Aspects (Springer: 1981).
[2] Bourgoin, J. C. & Lannoo, M. Point Defects in Semiconductors Ⅱ: Experimental Aspects. (Springer: 1983).
[3] Holt, D. B. & Yacobi, B. G. Extended Defects in Semiconductors: Electronic Properties, Device Effects and Structures. (Cambridge Univ. Press: 2007).
[4] Suzuki, T. & Matsumoto, Y. Effects of dislocations on photoluminescent properties in liquid phase epitaxial GaP. Appl. Phys. Lett. 26, 431–433 (1975). doi: 10.1063/1.88226
[5] Gfroerer, T. H., Zhang, Y. & Wanlass, M. W. An extended defect as a sensor for free carrier diffusion in a semiconductor. Appl. Phys. Lett. 102, 012114 (2013). doi: 10.1063/1.4775369
[6] Liu, H. N., Zhang, Y., Chen, Y. P. & Wijewarnasuriya, P. S. Confocal micro-PL mapping of defects in CdTe epilayers grown on Si (211) substrates with different annealing cycles. J. Electron Mater. 43, 2854–2859 (2014). doi: 10.1007/s11664-014-3129-y
[7] Ogletree, D. F. et al. Revealing optical properties of reduced-dimensionality materials at relevant length scales. Adv. Mater. 27, 5693–5719 (2015). doi: 10.1002/adma.201500930
[8] Moerner, W. E. & Fromm, D. P. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74, 3597–3619 (2003). doi: 10.1063/1.1589587
[9] Betzig, E. Proposed method for molecular optical imaging. Opt. Lett. 20, 237–239 (1995). doi: 10.1364/OL.20.000237
[10] Bretschneider, S., Eggeling, C. & Hell, S. W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett. 98, 218103 (2007). doi: 10.1103/PhysRevLett.98.218103
[11] Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000). doi: 10.1103/PhysRevLett.85.290
[12] Francoeur, S., Klem, J. F. & Mascarenhas, A. Optical spectroscopy of single impurity centers in semiconductors. Phys. Rev. Lett. 93, 067403 (2004). doi: 10.1103/PhysRevLett.93.067403
[13] Alberi, K. et al. Measuring long-range carrier diffusion across multiple grains in polycrystalline semiconductors by photoluminescence imaging. Nat. Commun. 4, 2699 (2013). doi: 10.1038/ncomms3699
[14] Fluegel, B. et al. Carrier decay and diffusion dynamics in single-crystalline cdTe as seen via microphotoluminescence. Phys. Rev. Appl. 2, 034010 (2014). doi: 10.1103/PhysRevApplied.2.034010
[15] Donolato, C. Modeling the effect of dislocations on the minority carrier diffusion length of a semiconductor. J. Appl. Phys. 84, 2656–2664 (1998). doi: 10.1063/1.368378
[16] Chen, F. X., Zhang, Y., Gfroerer, T. H., Finger, A. N. & Wanlass, M. W. Spatial resolution versus data acquisition efficiency in mapping an inhomogeneous system with species diffusion. Sci. Rep. 5, 10542 (2015). doi: 10.1038/srep10542
[17] Kuciauskas, D., Myers, T. H., Barnes, T. M., Jensen, S. A. & Allende Motz, A. M. Time-resolved correlative optical microscopy of charge-carrier transport, recombination, and space-charge fields in CdTe heterostructures. Appl. Phys. Lett. 110, 083905 (2017). doi: 10.1063/1.4976696
[18] Falkovsky, L. A. Investigation of semiconductors with defects using Raman scattering. Phys. Usp. 47, 249–272 (2004). doi: 10.1070/PU2004v047n03ABEH001735
[19] Wang, P. D., Cheng, C., Torres, C. M. S. & Batchelder, D. N. GaAs micrometer‐sized dot imaging by Raman microscopy. J. Appl. Phys. 74, 5907–5909 (1993). doi: 10.1063/1.354170
[20] Jang, H. S. et al. Raman spectroscopy of macroscopic defects of GaAs grown by molecular beam epitaxy. Appl. Phys. A 56, 571–574 (1993). doi: 10.1007/BF00331407
[21] Zardo, I. et al. Raman spectroscopy of wurtzite and zinc-blende GaAs nanowires: polarization dependence, selection rules, and strain effects. Phys. Rev. B 80, 245324 (2009). doi: 10.1103/PhysRevB.80.245324
[22] Harris, D. C. & Bertolucci, M. D. Symmetry and Spectroscopy. (Oxford Univ. Press: 1978).
[23] Xu, X. et al. Distortion and segregation in a dislocation core region at atomic resolution. Phys. Rev. Lett. 95, 145501 (2005). doi: 10.1103/PhysRevLett.95.145501
[24] Mooradian, A. & Wright, G. B. Observation of the Interaction of plasmons with longitudinal optical phonons in GaAs. Phys. Rev. Lett. 16, 999–1001 (1966). doi: 10.1103/PhysRevLett.16.999
[25] Pinczuk, A., Shah, J. & Wolff, P. A. Collective modes of photoexcited electron–hole plasmas in GaAs. Phys. Rev. Lett. 47, 1487–1490 (1981). doi: 10.1103/PhysRevLett.47.1487
[26] Fluegel, B., Mascarenhas, A., Snoke, D. W., Pfeiffer, L. N. & West, K. Plasmonic all-optical tunable wavelength shifter. Nat. Photonics 1, 701–703 (2007). doi: 10.1038/nphoton.2007.229
[27] Abstreiter, G., Cardona, M. & Pinczuk, A. in: Light Scattering in Solids Ⅳ: Electronics Scattering, Spin Effects, SERS, and Morphic Effects (eds Cardona, M. & Güntherodt, G.) (Springer, 1984).
[28] Irmer, G., Wenzel, M. & Monecke, J. The temperature dependence of the LO(T) and TO(T) phonons in GaAs and InP. Phys. Stat. Sol. B 195, 85–95 (1996). doi: 10.1002/pssb.2221950110
[29] Mascarenhas, A., Cheong, H. M., Seong, M. J. & Alsina, F. in Spontaneous Ordering in Semiconductor Alloys (ed Mascarenhas, A.) (Kluwer Academy, 2002).
[30] Mooradian, A. & McWhorter, A. L. Polarization and intensity of Raman scattering from plasmons and phonons in gallium arsenide. Phys. Rev. Lett. 19, 849–852 (1967). doi: 10.1103/PhysRevLett.19.849
[31] Liao, B. L., Najafi, E., Li, H., Minnich, A. J. & Zewail, A. H. Photo-excited hot carrier dynamics in hydrogenated amorphous silicon imaged by 4D electron microscopy. Nat. Nanotechnol. 12, 871–876 (2017). doi: 10.1038/nnano.2017.124
[32] Kuciauskas, D. et al. Charge-carrier transport and recombination in heteroepitaxial CdTe. J. Appl. Phys. 116, 123108 (2014). doi: 10.1063/1.4896673