[1] Vergyris P, Meany T, Lunghi T, Sauder G, Downes J et al. On-chip generation of heralded photon-number states. Sci Rep 2016; 6: 35975. doi: 10.1038/srep35975
[2] Solntsev AS, Setzpfandt F, Clark AS, Wu CW, Collins MJ et al. Generation of nonclassical biphoton states through cascaded quantum walks on a nonlinear chip. Phys Rev X 2014; 4: 031007.
[3] Silverstone JW, Bonneau D, Ohira K, Suzuki N, Yoshida H et al. On-chip quantum interference between silicon photon-pair sources. Nat Photonics 2014; 8: 104–108. doi: 10.1038/nphoton.2013.339
[4] Solntsev AS, Sukhorukov AA. Path-entangled photon sources on nonlinear chips. Rev Phys 2017; 2: 19–31. doi: 10.1016/j.revip.2016.11.003
[5] Latmiral L, Spagnolo N, Sciarrino F. Towards quantum supremacy with lossy scattershot boson sampling. New J Phys 2016; 18: 113008. doi: 10.1088/1367-2630/18/11/113008
[6] Zhang P, Aungskunsiri K, Martín-López E, Wabnig J, Lobino M et al. Reference-frame- independent quantum-key-distribution server with a telecom tether for an on-chip client. Phys Rev Lett 2014; 112: 130501. doi: 10.1103/PhysRevLett.112.130501
[7] Lobino M, Korystov D, Kupchak C, Figueroa E, Sanders BC et al. Complete characterization of quantum-optical processes. Science 2008; 322: 563–566. doi: 10.1126/science.1162086
[8] Rahimi-Keshari S, Scherer A, Mann A, Rezakhani AT, Lvovsky AI et al. Quantum process tomography with coherent states. New J Phys 2011; 13: 013006. doi: 10.1088/1367-2630/13/1/013006
[9] Liscidini M, Sipe JE. Stimulated emission tomography. Phys Rev Lett 2013; 111: 193602. doi: 10.1103/PhysRevLett.111.193602
[10] Helt LG, Steel MJ. Effect of scattering loss on connections between classical and quantum processes in second-order nonlinear waveguides. Opt Lett 2015; 40: 1460–1463. doi: 10.1364/OL.40.001460
[11] O'Brien JL, Furusawa A, Vučković J. Photonic quantum technologies. Nat Photon 2009; 3: 687–695. doi: 10.1038/nphoton.2009.229
[12] Tanzilli S, Martin A, Kaiser F, De Micheli MP, Alibart O et al. On the genesis and evolution of Integrated Quantum Optics. Laser Photon Rev 2012; 6: 115–143. doi: 10.1002/lpor.201100010
[13] Li HW, Przeslak S, Niskanen AO, Matthews JCF, Politi A et al. Reconfigurable controlled two-qubit operation on a quantum photonic chip. New J Phys 2011; 13: 115009. doi: 10.1088/1367-2630/13/11/115009
[14] Tanzilli S, De Riedmatten H, Tittel W, Zbinden H, Baldi P et al. Highly efficient photon-pair source using periodically poled lithium niobate waveguide. Electron Lett 2001; 37: 26–28. doi: 10.1049/el:20010009
[15] Zhang Q, Xie XP, Takesue H, Nam SW, Langrock C et al. Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock. Opt Express 2007; 15: 10288–10293. doi: 10.1364/OE.15.010288
[16] Martin A, Alibart O, De Micheli MP, Ostrowsky DB, Tanzilli S. A quantum relay chip based on telecommunication integrated optics technology. New J Phys 2012; 14: 025002. doi: 10.1088/1367-2630/14/2/025002
[17] Meany T, Ngah LA, Collins MJ, Clark AS, Williams RJ et al. Hybrid photonic circuit for multiplexed heralded single photons. Laser Photon Rev 2014; 8: L42–L46. doi: 10.1002/lpor.201400027
[18] Jin H, Liu FM, Xu P, Xia JL, Zhong ML et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. Phys Rev Lett 2014; 113: 103601. doi: 10.1103/PhysRevLett.113.103601
[19] James DFV, Kwiat PG, Munro WJ, White AG. Measurement of qubits. Phys Rev A 2001; 64: 052312. doi: 10.1103/PhysRevA.64.052312
[20] Eckstein A, Boucher G, Lemaître A, Filloux P, Favero I et al. High-resolution spectral characterization of two photon states via classical measurements. Laser Photon Rev 2014; 8: L76–L80. doi: 10.1002/lpor.201400057
[21] Fang B, Cohen O, Liscidini M, Sipe JE, Lorenz VO. Fast and highly resolved capture of the joint spectral density of photon pairs. Optica 2014; 1: 281–284. doi: 10.1364/OPTICA.1.000281
[22] Jizan I, Helt LG, Xiong CL, Collins MJ, Choi DY et al. Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes. Sci Rep 2015; 5: 12557. doi: 10.1038/srep12557
[23] Grassani D, Simbula A, Pirotta S, Galli M, Menotti M et al. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing. Sci Rep 2016; 6: 23564. doi: 10.1038/srep23564
[24] Rozema LA, Wang C, Mahler DH, Hayat A, Steinberg AM et al. Characterizing an entangled-photon source with classical detectors and measurements. Optica 2015; 2: 430–433. doi: 10.1364/OPTICA.2.000430
[25] Fang B, Liscidini M, Sipe JE, Lorenz VO. Multi-dimensional characterization of an entangled photon-pair source via stimulated emission tomography. Opt Express 2016; 24: 10013–10019. doi: 10.1364/OE.24.010013
[26] Titchener JG, Solntsev AS, Sukhorukov AA. Generation of photons with all-optically-reconfigurable entanglement in integrated nonlinear waveguides. Phys Rev A 2015; 92: 033819. doi: 10.1103/PhysRevA.92.033819
[27] Poddubny AN, Iorsh IV, Sukhorukov AA. Generation of photon-plasmon quantum states in nonlinear hyperbolic metamaterials. Phys Rev Lett 2016; 117: 123901. doi: 10.1103/PhysRevLett.117.123901
[28] Lenzini F, Kasture S, Haylock B, Lobino M. Anisotropic model for the fabrication of annealed and reverse proton exchanged waveguides in congruent lithium niobate. Opt Express 2015; 23: 1748–1756. doi: 10.1364/OE.23.001748
[29] Korkishko YN, Fedorov VA, Morozova TM, Caccavale F, Gonella F et al. Reverse proton exchange for buried waveguides in LiNbO3. J Opt Soc Am A 1998; 15: 1838–1842. doi: 10.1364/JOSAA.15.001838
[30] Nielsen MA, Chuang IL. Quantum Computation and Quantum Information 10th ed.Cambridge: Cambridge University Press, 2011.