### HTML

[1] |
Bayer M..
Coupling and entangling of quantum states in quantum dot molecules[J]. Science, 2001, 291(): 451-453.
doi: 10.1126/science.291.5503.451 |

[2] |
Petta J. R..
Coherent manipulation of coupled electron spins in semiconductor quantum dots[J]. Science, 2005, 309(): 2180-2184.
doi: 10.1126/science.1116955 |

[3] |
Bester G., Shumway J., Zunger A..
Theory of excitonic spectra and entanglement engineering in dot molecules[J]. Phys. Rev. Lett., 2004, 93(): 047401-.
doi: 10.1103/PhysRevLett.93.047401 |

[4] |
Robledo L..
Conditional dynamics of interacting quantum dots[J]. Science, 2008, 320(): 772-775.
doi: 10.1126/science.1155374 |

[5] |
Sheng W. D., Leburton J. P..
Anomalous quantum-confined stark effects in stacked InAs/GaAs self-assembled quantum dots[J]. Phys. Rev. Lett., 2002, 88(): 167401-.
doi: 10.1103/PhysRevLett.88.167401 |

[6] |
Emary C., Sham L. J..
Optically controlled logic gates for two spin qubits in vertically coupled quantum dots[J]. Phys. Rev. B, 2007, 75(): 125317-.
doi: 10.1103/PhysRevB.75.125317 |

[7] |
Weiss K. M..
Coherent two-electron spin qubits in an optically active pair of coupled InGaAs quantum dots[J]. Phys. Rev. Lett., 2012, 109(): 107401-.
doi: 10.1103/PhysRevLett.109.107401 |

[8] |
Villas-Bôas J. M., Govorov A. O., Ulloa S. E..
Coherent control of tunneling in a quantum dot molecule[J]. Phys. Rev. B, 2004, 69(): 125342-.
doi: 10.1103/PhysRevB.69.125342 |

[9] |
Xu X. L., Williams D. A., Cleaver J. A. R..
Splitting of excitons and biexcitons in coupled InAs quantum dot molecules[J]. Appl. Phys. Lett., 2005, 86(): 012103-.
doi: 10.1063/1.1842861 |

[10] |
Vora P. M..
Spin-cavity interactions between a quantum dot molecule and a photonic crystal cavity[J]. Nat. Commun., 2015, 6(): 7665-.
doi: 10.1038/ncomms8665 |

[11] |
Kerfoot M. L..
Optophononics with coupled quantum dots[J]. Nat. Commun., 2014, 5(): 3299-.
doi: 10.1038/ncomms4299 |

[12] |
Thierschmann H..
Three-terminal energy harvester with coupled quantum dots[J]. Nat. Nanotechnol., 2015, 10(): 854-858.
doi: 10.1038/nnano.2015.176 |

[13] |
Rontani M..
Molecular phases in coupled quantum dots[J]. Phys. Rev. B, 2004, 69(): 085327-.
doi: 10.1103/PhysRevB.69.085327 |

[14] |
Zhou X. R..
Coulomb interaction signatures in self-assembled lateral quantum dot molecules[J]. Phys. Rev. B, 2013, 87(): 125309-.
doi: 10.1103/PhysRevB.87.125309 |

[15] |
Zhou X. R., Doty M..
Design of 4-electrode optical device for application of vector electric fields to self-assembled quantum dot complexes[J]. J. Appl. Phys., 2014, 116(): 163101-.
doi: 10.1063/1.4899184 |

[16] |
Doty M. F..
Antibonding ground states in InAs quantum-dot molecules[J]. Phys. Rev. Lett., 2009, 102(): 047401-.
doi: 10.1103/PhysRevLett.102.047401 |

[17] |
Ma X. Y..
Hole spins in an InAs/GaAs quantum dot molecule subject to lateral electric fields[J]. Phys. Rev. B, 2016, 93(): 245402-.
doi: 10.1103/PhysRevB.93.245402 |

[18] |
De La Giroday A. B..
Excitonic couplings and Stark effect in individual quantum dot molecules[J]. J. Appl. Phys., 2011, 110(): 083511-.
doi: 10.1063/1.3652766 |

[19] |
Ortner G..
Control of vertically coupled InGaAs/GaAs quantum dots with electric fields[J]. Phys. Rev. Lett., 2005, 94(): 157401-.
doi: 10.1103/PhysRevLett.94.157401 |

[20] |
Kagan C. R., Murray C. B..
Charge transport in strongly coupled quantum dot solids[J]. Nat. Nanotechnol., 2015, 10(): 1013-1026.
doi: 10.1038/nnano.2015.247 |

[21] |
Wijesundara K. C..
Tunable exciton relaxation in vertically coupled semiconductor InAs quantum dots[J]. Phys. Rev. B, 2011, 84(): 081404(R)-.
doi: 10.1103/PhysRevB.84.081404 |

[22] |
Stinaff E. A..
Optical signatures of coupled quantum dots[J]. Science, 2006, 311(): 636-639.
doi: 10.1126/science.1121189 |

[23] |
Krenner H. J..
Optically probing spin and charge interactions in a tunable artificial molecule[J]. Phys. Rev. Lett., 2006, 97(): 076403-.
doi: 10.1103/PhysRevLett.97.076403 |

[24] |
Wang L. J..
Self-assembled quantum dot molecules[J]. Adv. Mater., 2009, 21(): 2601-2618.
doi: 10.1002/adma.200803109 |

[25] |
Liang B. L..
Energy transfer within ultralow density twin InAs quantum dots grown by droplet epitaxy[J]. ACS Nano, 2008, 2(): 2219-2224.
doi: 10.1021/nn800224p |

[26] |
Unold T..
Optical control of excitons in a pair of quantum dots coupled by the dipole–dipole interaction[J]. Phys. Rev. Lett., 2005, 94(): 137404-.
doi: 10.1103/PhysRevLett.94.137404 |

[27] |
Kim H..
Exciton dipole–dipole interaction in a single coupled-quantum-dot structure via polarized excitation[J]. Nano Lett., 2016, 16(): 7755-7760.
doi: 10.1021/acs.nanolett.6b03868 |

[28] |
Beyer J..
Spin injection in lateral InAs quantum dot structures by optical orientation spectroscopy[J]. Nanotechnology, 2009, 20(): 375401-.
doi: 10.1088/0957-4484/20/37/375401 |

[29] |
Cundiff S. T..
Optical coherence in semiconductors: strong emission mediated by nondegenerate interactions[J]. Phys. Rev. Lett., 1996, 77(): 1107-1110.
doi: 10.1103/PhysRevLett.77.1107 |

[30] |
Guenther T..
Coherent nonlinear optical response of single quantum dots studied by ultrafast near-field spectroscopy[J]. Phys. Rev. Lett., 2002, 89(): 057401-.
doi: 10.1103/PhysRevLett.89.057401 |

[31] |
Kim H..
Light controlled optical Aharonov–Bohm oscillations in a single quantum ring[J]. Nano Lett., 2018, 18(): 6188-6194.
doi: 10.1021/acs.nanolett.8b02131 |

[32] |
Santori C..
Submicrosecond correlations in photoluminescence from InAs quantum dots[J]. Phys. Rev. B, 2004, 69(): 205324-.
doi: 10.1103/PhysRevB.69.205324 |

[33] |
Sallen G..
Subnanosecond spectral diffusion measurement using photon correlation[J]. Nat. Photonics, 2010, 4(): 696-699.
doi: 10.1038/nphoton.2010.174 |

[34] |
Wang Z. M..
Unusual role of the substrate in droplet-induced GaAs/AlGaAs quantum-dot pairs[J]. Phys. Status Solidi Rapid Res. Lett., 2008, 2(): 281-283.
doi: 10.1002/pssr.200802196 |

[35] |
Keizer J. G..
Atomic scale analysis of self assembled GaAs/AlGaAs quantum dots grown by droplet epitaxy[J]. Appl. Phys. Lett., 2010, 96(): 062101-.
doi: 10.1063/1.3303979 |

[36] |
Takagahara T..
Theory of exciton doublet structures and polarization relaxation in single quantum dots[J]. Phys. Rev. B, 2000, 62(): 16840-.
doi: 10.1103/PhysRevB.62.16840 |

[37] |
Hafenbrak R..
Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K[J]. N. J. Phys., 2007, 9(): 315-.
doi: 10.1088/1367-2630/9/9/315 |

[38] |
Kim H. D..
Asymmetry of localised states in a single quantum ring: polarization dependence of excitons and biexcitons[J]. Appl. Phys. Lett., 2013, 102(): 033112-.
doi: 10.1063/1.4789519 |

[39] |
Kodriano Y..
Radiative cascade from quantum dot metastable spin-blockaded biexciton[J]. Phys. Rev. B, 2010, 82(): 155329-.
doi: 10.1103/PhysRevB.82.155329 |

[40] |
Hours J..
Exciton radiative lifetime controlled by the lateral confinement energy in a single quantum dot[J]. Phys. Rev. B, 2005, 71(): 161306(R)-.
doi: 10.1103/PhysRevB.71.161306 |

[41] |
Adachi S..
Exciton-exciton interaction and heterobiexcitons in GaN[J]. Phys. Rev. B, 2003, 67(): 205212-.
doi: 10.1103/PhysRevB.67.205212 |