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Backpropagation process in thin-film neural networks44

In this part, we mainly introduce the backpropagation process in thin-film neural45

networks (TFNNs). The theoretical model of multilayer thin films is shown in Fig. S1.46

There are n+1 layers in the multilayer thin films. Each layer has the thickness �� and47

could be described by the layer matrix �� = ��−�����
−� . The + and the - signs48

distinguish between forward and backward field amplitudes. Therefor the optical49

responses of the multilayer could be described by the product of n+1 matrices:50
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Fig. S1. The schematic view of multilayer thin films.54

55

For the forward propagation process in TFNNs, the proceedings could be viewed as56

a sequence of matrix multiplier calculations, as illustrated in Eq. (S2) and Fig. S2.57
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Fig. S2. The forward propagation process in TFNNs.61

62

For the stem of the backpropagation process in TFNNs, the process starts from the63

Fresnel coefficients � and ended in �� , �� , �� , and �� . And the gradient of each64

layer is calculated in turn. The question is, given the gradients of the next layer65

(�� ���+� , �� ���+� , �� ���+� , �� ���+� ), how to obtain the gradients of this66

layer (�� ��� , �� ��� , �� ��� , �� ��� ). The following equations establish the67

relations in the backpropagation through chain rule as shown in Eq. (S3). The68

repeated application of the above transformations for the n+1 layers leads to the stem69

of the backpropagation in TFNNs as illustrated in Fig. S3.70
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73

Fig. S3. The stem of the backpropagation process in TFNNs.74

75

For the branches of the backpropagation process in TFNNs, the process starts from76

the stem in each layer and ended in ��, ��, ��, and �� as shown in Eq. (S4) and Fig.77

S4.78
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Fig. S4. The branches of the backpropagation process in TFNNs82

83



The propagation of the gradients from the Fresnel coefficients � to the energy84

coefficients � is constructed from the complex number space to the real number85

space as shown in Fig. S5, The basic idea is to calculate the value of �� �� .86

However, this derivative doesn't exist for its different value on each direction on the87

complex plane. Therefore a more robust connection between the complex number88

space to real number space is proposed as shown in Eq. (S5)89
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Fig. S5. Backpropagation from real number space to complex number space.93

94

The Cauchy equations and Forouhi-Bloomer dispersion relations are used as the95

dispersion relations for the wavelength-dependent refractive indices in TFNNs.96

Cauchy equations are suited to model SiO2 in monolayer thin films and TiO2, Si3N4,97

and K9 glass in multilayer thin films:98

�(�) = � + �
�2 + �

�4 (S6a)99

�(�) = 0 (S6b)100



where �� , �� , and �� are the fitting parameters in Cauchy equations.101

Forouhi-Bloomer dispersion relations have been developed for modelling the complex102

index of refraction of Si in monolayer and multilayer thin films:103
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Through the backpropagation propagation process in TFNNs, the gradients �� �� ,110

�� �� , �� �� ⋯ are obtained for optimization. Thus, the derivatives of the111

dispersion relations should also be given in the backpropagation process for112

calculating the gradients.113

114

Comparison with gradient based differential method115

If gradient based differential method is applied to the optical inverse problem of116

232-layer thin films, the following process should be completed.117

Step 1: Initial values of the thicknesses of 232-layer thin films is selected as the118

initial point for optimization. The spectrum of the thin films with initial thicknesses119

could be obtained by one TMM calculation.120



Step 2: The thickness of �-th layer is changed a little bit, while the thicknesses of121

the rest layer remain same. The spectrum of the thin films with current thicknesses122

could be obtained by one TMM calculation.123

Step 3: By comparing the spectra obtained from Step 1 and Step 2, the derivative of124

spectra with respect to the thickness of �-th layer is obtained.125

Step 4: Repeat Step 2 and Step 3 232 times. We could know how to update the126

thickness of each layer in this iteration.127

Therefore, at least 233 TMM calculations are needed in an iteration for solving128

optical inverse problem of 232-layer thin films (67.498 s per iteration). What make it129

much worse is that it often takes dozens or even hundreds of iterations before a130

reasonable design can be found. Although each TMM calculation of 232-layer thin131

films is fast, conventional methods such as TMM for optical inverse problem, where132

ten thousands of or millions of simulations are needed for complex structures such as133

232-layer thin films, are still not fast enough. A practical error and time for solving134

the optical inverse problem of 232-layer thin films by using the differential method is135

shown in Fig. S6.136

137

138



Fig. S6. A practical error and time for solving the optical inverse problem of139

232-layer thin films. (a) The error between the target and the simulated spectra at140

each iteration. (b) The time needed for TFNNs (black, 102.13 seconds for 100141

iterations) and differential method (red, 1.96 hours for 100 iterations).142

143

Using ANNs for solving optical inverse problem of 232-layer thin films144

We use ANNs to solve the inverse problem of 232-layer thin films. We train a145

232-layer thin films model by using 1,000,000 examples of 232-layer thin films and146

constrain thickness of each layer in a relatively small range (80 nm to 120 nm, and 10147

nm to 50 nm). It still took us 30517 s ≈ 509.51 min ≈ 8.49 h for obtaining148

1,000,000 examples and another 7.44 h for training per 100 epochs. The results of149

ANNs show that the optical inverse problem of multilayer thin films with hundreds of150

layers is not an easy task.151



152

Fig. S7. Using ANNs to solve the inverse problem of 232-layer thin films with153

thickness between 80 nm and 120 nm.154

155

As shown in Fig. S7, we divided 1,000,000 examples of 232-layer thin films into156

20 parts. Each part contains 50,000 examples and is simulated on each core of a157



multicore server (Intel(R) Xeon(R) Gold 6230 CPU @2.10GHz 2.10GHz). However,158

it still took us 30517 s ≈ 509.51 min ≈ 8.49 h.159

Then, we divided 1,000,000 examples into training dataset and test dataset. The160

training dataset includes 950,000 examples and test dataset includes 50,000 examples.161

The architecture of the neural networks is shown in Fig. S7, and its training results is162

also shown in Fig. S7. After 100 epochs of training (It took us 7.44 h on Tesla GPU163

(Tesla V100-PCIE-32GB, pci bus id: 0000:af:00.0, compute capability: 7.0)), the164

neural networks have only learned the band gaps of the multilayer thin films. the rest165

dense fringes are ignored as noises. The network could not reduce the training error166

further.167

Since the dense fringes prevented ANNs learning the spectra of 232-layer thin films168

with thickness between 80 nm and 120 nm, we simulated another 1,000,000 examples169

of 232-layer thin films with thickness between 10 nm and 50 nm, and training the170

neural networks for 300 epochs (It took us 19.17 h on Tesla GPU (Tesla171

V100-PCIE-32GB, pci bus id: 0000:af:00.0, compute capability: 7.0)). The following172

results in Fig. S8 will show that even in this cases, recently proposed ANNs solution173

for optical inverse problem couldn’t handle it.174



175

Fig. S8. Whole architecture of the implementation of TFNNs. Using ANNs to176

solve the inverse problem of 232-layer thin films with thickness between 10 nm177

and 50 nm. ANNs could learn the spectra in wavelength range between 800 nm and178

1200 nm, while ignore dense fringes between 400 nm and 800 nm as noises.179

180

Monolayer thin films with different thicknesses181



182

Fig. S9. Fitting results of monolayer thin films with different thicknesses.183

184

Unnormal incidence cases185

186

Fig. S10. Unnormal incidence of rays for SiO2 and SOI wafer. (a) Experimental187

and fitting result of SiO2 thin films on Si with the incident beam inclining to 60188



degrees. The fitting thickness of SiO2 is 287.6 nm. (b) Experimental and fitting result189

of SOI wafer with the incident beam inclining to 60 degrees. The fitting thickness of190

top Si is 196.9 nm, and the fitting thickness of SiO2 is 376.1 nm.191

192

Refractive index of the substrate193

194

Fig. S11. Obtaining the refractive index of the substrate. (a) The refractive index195

of glass substrate obtained by measuring the transmittance at 0 degree. (b) The196

refractive index of STO substrate obtained by measuring the reflectance at 60 degrees.197

198

Optimizing thicknesses and refractive indices of SOI wafer199



200

Fig. S12. Optimizing thicknesses and refractive indices of SOI wafer. (a) Only the201

thicknesses of SOI wafer are optimized. (b) Both the thicknesses and refractive202

indices of SOI wafer are optimized.203

204

Optical inverse problem of 3D NAND205

The detection of the erroneous layer in 3D NAND is presented based on simulation206

as a potential application of TFNNs. The multilayer structure of 3D NAND with 200207

layers is shown in Fig. S13(a). Here, two samples of 3D NAND are discussed. One is208

a normal sample, and another is an outlier sample with an erroneous layer in it. Our209

main aim is to distinguish the outlier sample from the normal sample and identify the210

position of the erroneous layer in the outlier sample. For the normal sample, the211

thicknesses of SiO2 and Si3N4 layers are around 30 nm and 20 nm, respectively. For212

the outlier sample, the thickness of 40-th layer is intentionally set to be 5 nm thicker213

than the thickness of normal Si3N4 layers, while the rest layers remain unchanged.214

We add random noise on the thickness of each layer by considering the fluctuation of215

thickness in practical fabrication. The standard deviation of the random noise on216

thickness is 0.3 nm. After several iterations in the training of TFNNs, the predicted217



thicknesses and actual thicknesses of the normal and outlier 3D NAND are shown in218

Fig. S13(b). For the normal sample, the obtained thicknesses of all layers are219

restricted around 20 nm and 30 nm with the standard deviation of 0.3 nm. For the220

outlier sample, the obtained thickness of 40-th layer, marked as red circle as shown in221

Fig. S13(b), has a large deviation from other layers because of the large gradient of222

this layer in the training process of TFNNs, while the standard deviation of the rest223

layers is 0.3 nm. Therefore, TFNNs could successfully distinguish the outlier sample224

from the normal sample and detect the erroneous layer in 3D NAND.225

226

227

Fig. S13. TFNNs for 3D NAND detection. (a) Schematic view of the multilayer228

stacks of 3D NAND. (b) The actual thicknesses and predicted thicknesses by TFNNs229

of the normal sample (top) and outlier sample (bottom).230

231

232

Extended to other nanophotonic structures233



For other nanophotonic structures (taking photonic crystals as an example), we can234

also find such a structural similarity between photonic crystals and neural networks.235

Because of the structural similarity, we can build backpropagation process similar to236

neural networks in photonic crystals.237

At the interface of photonic crystals, Eq. (1a) and Eq. (1b) in our manuscript, the238

structural similarity between the weight connection of neural networks and the239

interface of nanophotonic structures, still hold true. The differences in photonic240

crystals are: ��−1 and ��−1 of photonic crystals are vectors with N elements, where241

N is the number of the reciprocal lattice vector used in calculation, while ��−1 and242

��−1 of thin films are numbers. The interface matrix �� of photonics crystals is �� =243

��−�
−� ��. The details expression and the meaning of matrix �� refer to Eq. (4.6) and244

Eq. (4.7) in [D.M. Whittaker, I.S. Culshaw, Scattering-matrix treatment of patterned245

multilayer photonic structures, Phys. Rev. B 60 (1999) 2610-2618]. While the246

interface matrix of thin films is �� = ��−�
−� ��. The details expression and the meaning247

of matrix �� refer to Eq. (1) in [Katsidis, C. C. & Siapkas, D. I. General248

transfer-matrix method for optical multilayer systems with coherent, partially249

coherent, and incoherent interference. Applied Optics 41, 3978–87 (2002)].250

At the bulk of photonic crystals, Eq. (2a) and Eq. (2b) in our manuscript, the251

structural similarity between the neurons of neural networks and the bulk of252

nanophotonic structures, still hold true. The differences in photonic crystals are: The253

propagation matrix �� of photonic crystal is254

�� = ��(�) �
� ��( − �)

(S9)255



where the detail expression and the meaning of ��(�) and ��( − �), diagonal matrices,256

refer to Eq. (4.1) and Eq. (4.2) in [D.M. Whittaker, I.S. Culshaw, Scattering-matrix257

treatment of patterned multilayer photonic structures, Phys. Rev. B 60 (1999)258

2610-2618]. While the propagation matrix �� of thin films is259

�� = ���� 0
0 �−���

(S10)260

Through the above comparison, the backpropagation process could also be established261

in photonic crystals. And the method in our manuscript could be extended to other262

nanophotonic structures. What’s more, ��−1 and ��−1 of photonic crystals are263

vectors with N elements, which means that the number of the neurons in photonic264

crystals eventually depends on the number of the optical modes propagating in265

photonic crystals266

267

Reuse property268

Here, we present the example of one training be used for multiple thin film269

structures. We first establish a multilayer thin film model with 10 layers, and the270

optimization result is shown in Fig. S14 (blue line). Then, we add 10 layers on271

previous model, and it could be directly used for the inverse design task for thin films272

with 20 layers, and better optimization result is obtained shown in Fig. S14 (green273

line). And there is no need for training a new model for the 20-layer inverse design274

task.275

276



277

Fig. S14. One training for multiple thin film structures. the results of 20-layer thin278

films could be obtained by adding 10 layers on previous trained model of 10-layer279

thin films.280

281

Further reducing difference/errors282

283

We will discuss how to further reduce the difference/errors of the two aspects of284

optical inverse problems, optical metrology and optical inverse design.285

For optical metrology task of monolayer thin films, since the initial structural286

parameter is near the global minimum point, the difference/errors mainly come from287

the noise during experimental measurement. We can reduce errors through some288

experimental methods (e.g. averaging the values of repeated measurements.)289

For inverse design task and metrology task of multilayer thin films, it's easy to get290

stuck in the local minimum. An effective solution is to select multiple initial values in291



the global range, and then choose the result with the smallest error among these292

results. We conduct relevant analysis for 60-layer thin films. 200 initial points are293

selected and the following results are 10 cases among them, shown in Table S1.294

Therefore, Case 6 with the smallest errors among 200 initial points are chosen. By295

using this method, we could avoid plunging into the local minimum, and further296

reduce the difference/errors.297

If the number of layers or free parameters of design tasks is not limited, the method298

in our manuscript can get smaller errors by adding more layers or free parameters into299

the design tasks, as shown in Fig. S13.300

301

Table S1. Multiple initial values for 60-layer thin films.302

Case 1 2 3 4 5 6 7 8 9 10

MSE

(× 10−3)

1.38

18

1.39

56

1.21

76

1.59

68

1.54

24

1.19

71

1.20

38

1.43

11

1.31

57

1.43

75

303

Comparing with other neural network304

Here, we list the advantages and disadvantages of other neural network methods, as305

well as the advantages and disadvantages of the methods in our manuscript.306

Advantages of other neural network methods:307

1. It’s easy to be applied to optical inverse design of other structures. By using the308

spectra of different structures to train the neural network model, the neural network309

methods can be easily applied to other nanophotonic structures.310



2. Less simulation time. The time needed for the well-trained neural network model311

to complete a calculation from structure to spectrum is far less than that for a312

conventional electromagnetic simulation.313

3. Analytical gradients. The analytic gradients can be obtained by using the314

backpropagation of neural network.315

Disadvantages of other neural network methods:316

1. Training neural network model requires large dataset, especially for complex317

inverse design problem (e.g. multilayer thin films with 232 layers)318

2. Low accuracy. There is between the output results of the training model and the319

electromagnetic simulation results.320

3. Some cases are difficult to train. Part of the training tasks for optical inverse321

problem has been proved difficult, which needs to be solved by reasonably design322

neural network model.323

4. The neural network model trained for the inverse design task of thin films with324

232 layers cannot be applied to the reverse design task of thin films with 231 layers. A325

new neural network model needs to be trained for the thin films with 231 layers.326

Advantages of the method in our manuscript:327

1. Without dataset for training. The backpropagation process is directly established328

based on the transfer matrix, and the thin films could be directly regarded as a neural329

network without a large number of datasets to train another neural network to330

approximate Maxwell‘s Equation.331



2. The spectra calculated by this method are accurate, and the analytical gradient332

can also be obtained by back propagation.333

3. One training model could be used for multiple thin film structures. Based on the334

neural network model for thin films with 232 layers, one layer can be reduced to make335

it suitable for thin films with 231 layers.336

Disadvantages of the method in our manuscript:337

1. Compared with other neural networks, it takes more time to complete one338

iteration, but it’s still faster than differential methods and evolutionary algorithms.339

2. If we need to extend this method to other nanophotonic structures, we need to340

exploit the structural similarity between nanophotonic structures and neural networks,341

and construct the backpropagation process in other nanophotonic structures.342

343

Software architecture344

345

Fig. S15. Whole architecture of the implementation of TFNNs.346


