Supplementary Information for

Contrast-Enhanced Fluorescence Microscope by LED Integrated

Excitation Cubes

Yuanhua Liu^{1,#}, Xiang Zhang^{1,#}, Fei Su^{1,2}, Zhiyong Guo^{1,*}, Dayong Jin^{1,2,*}

¹UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

²Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, NSW 2007, Australia

*Corresponding author. E-mail: guozy@sustech.edu.cn (Z. Guo); dayong.jin@uts.edu.au (D. Jin).

[#]These authors contributed equally to this work.

Contents	Description
Supplementary	Details of LEC design for Nexcope NE900
Figure S1	Details of LEC design for Nexcope NE900
Supplementary	Calculation illustration of time and allowing and the income to the plane.
Figure S2	Schematic illustration of time-gated luminescence technology
Supplementary	Somula fabrication and monomation
Note 1	Sample fabrication and preparation

Supplementary Figure S1. The LEC module for Nexcope NE900 fluorescence microscope

We have tried U-MF2-based LECs in Nexcope NE900 and Olympus IX71 fluorescence microscope, which can also be used for Olympus BX41/ BX51/ BX61/ IX81 fluorescence microscopes and replace U-MNUA2, U-MWBV2, U-MWIB3, U-MNIBA3 filter cubes.

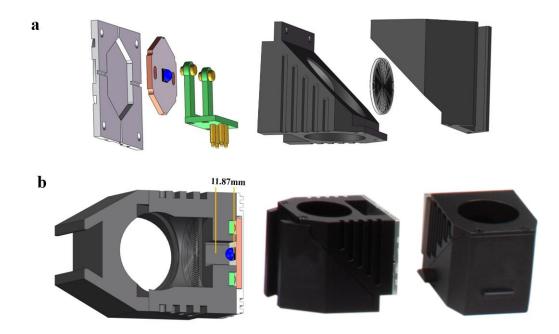


Figure S1. The LEC module was designed regarding U-MF2 series fluorescence filter cubes, so it can be perfectly installed in Nexcope NE900 fluorescence microscope.

Supplementary Figure S2: Schematic illustration of time-gated luminescence technology The lifetime of DAPI and autofluorescence is nanosecond scale and that of long-lived lanthanide probe is in the range of tens of microseconds to a few milliseconds. When the LED is switched off, the chopper blade will block the fluorescence signal enter the detector during a delay time. The short-lived signal decays rapidly, leaving only long-lived fluorescence when the chopper blade leaves the pinhole. Thus, during the imaging window, only long-lived signal can be detected. The related mechanism is illustrated in Figure S2.

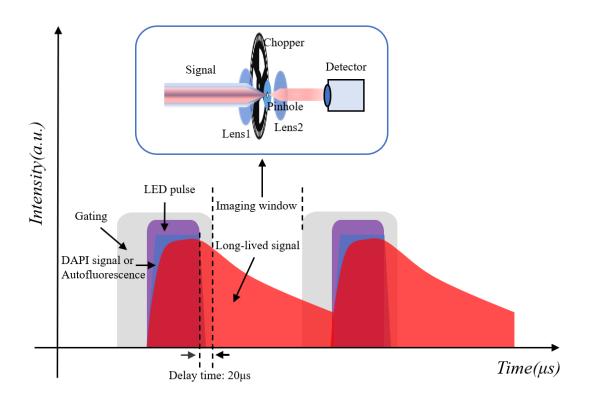


Figure S2. The schematic illustration of time-gated luminescence technology for removing short-lived fluorescence signal

Supplementary Note 1: Sample fabrication and preparation

1. Biological tissue samples preparation

All the biological samples were labeled using the standard immunofluorescence staining procedure.

- Tissue/cell fixation on slides for antigen repair:
 - ➤ Wash slides three times with PBS.
 - Use 1x Antigen repair fluid then microwave over medium-high heat until boiling. Heat to boiling over high heat, 20min, then cool to room temperature.
 - ➤ Wash slides one time with TBS.
- Enclosed
 - ▶ 10% normal goat serum (NGS stored at -20°C) diluted in PBS, 30-60 min.
- Immune response
 - ▶ Primary antibody (10% NGS dilution), 4°C one night.
 - ➢ Wash slides two times with PBS.
 - Label the tissue/cell with fluorescent probes, RT 30-60min

- > Wash slides two times with PBS.
- Stain cell nuclei with DAPI, RT 2min.
 - Wash 2 times with water, 15min.
- Coverslip sealing with glycerol.

Breast cancer cell BT474 was labeled by HER2 mRNA smFISH procedure.

• cell fixation

Cells were incubated on slides 37°C through overnight incubation;Fixation was performed with PFA for 30min

- Pretreatment of cell slides for hybridization
 Wash slides two times with PBS;
 - Permeabilization or protease treatment for 10-30min
- RNA single molecule hybridization
 Add 2ulRNA probe and 18ul hybridization solution
 The sections were sealed and hybridized overnight at 37 °C or for 3 hours at 40 °C
- Wash after hybridization
 The slides were washed at SSC for 15min at room temperature and at 65 °C for 15min
- The samples were counterstained and sealed

The slides were dried and counterstained with DBCO-BHHBCB-Eu and DAPI.

Breast cancer cell SKBR3 was labeled by chrosome 17 centromeres DNA FISH procedure.

• cell fixation

Cell suspensions were fixed with 3:1 methanol and glacial acetic acid

- Prepare cell drops and pretreatment of cell slides for hybridization Cell drops are incubated with 2XSSC (0.5%Trition) at 37°C .
- Dna in situ hybridization
 1uL chrosome 17 centromeres DNA probe and 9 ul hybridization solution
 The cell were sealed and denaturation at 85°C, hybridized overnight at 37 °C.
- Wash after hybridization
 The slides were washed at SSC for 15min at room temperature and at 65 °C for 15min
- The samples were counterstained and sealed. The slides were dried and counterstained with streptavidin-terbium and DAPI.