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Supplementary Notes 1: Creation and characterization of synthetic OAM light 

fields 

To achieve real-time, high-energy efficiency and high-accuracy detection in rotating 

axis orientations, it is necessary to create customized OAM light fields with four-

hotspots that meet the orthogonality and rotational symmetry requirements. Towards 

this end, we adopt to a linear strategy that involves coherently superposing ( )1N N   

pairs of specific phase-conjugated OAM light fields. This process can be formulized in 

the cylindrical coordinates ( ), ,r z  at 0z = : 
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with the conjugate superposed OAM light fields: 

( ) ( ) ( ) ( ), , exp exp
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where the radial-related complex amplitude, 
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in which 0E  is the amplitude factor. 0 is the beam waist of the Gaussian beam. nl

pL  

is the Laguerre polynomial with radial mode index 0p = . More importantly, the OAM 

index nl  plays a pivotal role in our study. They can be constructed by using either an 

arithmetic sequence with the first term and common difference both being 4, or a 

geometric sequence with the first term of 4 and the common ratio of 2. Specifically, 

4nl n=   or 
12n

nl
+=   for a n  -th superposed phase-conjugated OAM light field. The 

corresponding customized OAM light fields can also be classified as either arithmetic 

sequence 𝐸𝑁
𝑎𝑠 or geometric sequence 𝐸𝑁

𝑔𝑠
. The simulated light field distributions for 

both two cases are shown in Fig. S1, respectively. As we can see from Fig. S1, assigning 

each of the two different sets of OAM indices nl  to the superposed phase-conjugated 

OAM light fields can create four-hotspots OAM light fields. 



 

Figure S1 The distributions of partial synthetic OAM light fields with four main hotspots. The four-

hotspots OAM light fields generated by (a) 𝐸2
𝑎𝑠= E0,±4 + E0,±8; (b) 𝐸3

𝑎𝑠= E0,±4 + E0,±8 + E0,±12; (c) 

𝐸4
𝑎𝑠= E0,±4 + E0,±8 + E0,±12 + E0,±16; (d) 𝐸5

𝑎𝑠=E0,±4 + E0,±8 + E0,±12 + E0,±16 + E0,±20 with OAM 

indices of the arithmetic sequence ln = 4n. The four-hotspots OAM light field distributions created by (e) 

𝐸2
𝑔𝑠

= E0,±4 + E0,±8; (f) 𝐸3
𝑔𝑠

= E0,±4 + E0,±8 + E0,±16; (g) 𝐸4
𝑔𝑠

= E0,±4 + E0,±8 + E0,±16 + E0,±32; (h) 

𝐸5
𝑔𝑠

=E0,±4 + E0,±8 + E0,±16 + E0,±32 + E0,±64 with OAM indices of the geometric sequence ln = 2n+1. 

 

Furthermore, it is worth to mention that the quality of the synthetic OAM light is 

important for the probing rotating axis orientations. It is well-known that any complex-

valued functions can be represented as the superposition of a set of orthogonal complete 

basis vectors. Laguerre-Gaussian modes (LGp,l) within Hilbert space is a set of 

orthogonal and complete basis vectors and any optical fields can be superposed by them 

[S1, S2], with no exception to the synthetic OAM light fields EN. Mathematically, this 

superposition process can be formulized as:  

( ) ( ), ,

,

, , , ,p p lN l

p l

E r z A LG r z =                 (S4) 

where Ap,l, with radial index p = 0, characters the weighting of each basis vector within 

the synthetic OAM light fields, and its intensity denotes the OAM spectrum which can 

be described by following inner product operation as: 
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According to Eqs. (S4), (S5) and Eq. (1) in the main manuscript, we thus simulate the 

on-axis OAM spectra of synthetic OAM light fields EN with N = 2, 3, 4, 5, as shown in 

Fig. S2. As we can see, the −8, −4, +4 and +8-order intramodal components possess 

totally parallel weightings in E2 fields (see Figs. S2(a) and S2(b)). This is because E2 

fields consist of these four equal-proportional mode components given by Eq. (1) in the 

main manuscript. The same law can also be compatible with E3 fields in Figs. S2 (b) 

and (f) as well as 𝐸4
𝑎𝑠 fields in Fig. S2 (c). Whereas Figs. S2(d), (g) and (h) shows the 

weighting mismatches between the intramodal components, especially for high-order 

intramodal components, owing to there exist the salient discrepancies for the modal 

radius of high-order projecting modes with the synthetic OAM light fields. Nonetheless, 

in practice, we can manipulate the radii of uploaded projecting modes with a well-

established diffractive optical element, and thus this would indeed have no impact on 

our final detection results.  

 

Figure S2 Characterization of quality of synthetic OAM light fields with OAM spectrum. The OAM 

spectra corresponding to synthetic OAM light fields generated by (a) 𝐸2
𝑎𝑠= E0,±4 + E0,±8; (b) 𝐸3

𝑎𝑠= 

E0,±4 + E0,±8 + E0,±12; (c) 𝐸4
𝑎𝑠= E0,±4 + E0,±8 + E0,±12 + E0,±16; (d) 𝐸5

𝑎𝑠=E0,±4 + E0,±8 + E0,±12 + 

E0,±16 + E0,±20 with OAM indices of the arithmetic sequence ln = 4n. The OAM spectra matching synthetic 

OAM light fields created by (e) 𝐸2
𝑔𝑠

= E0,±4 + E0,±8; (f) 𝐸3
𝑔𝑠

= E0,±4 + E0,±8 + E0,±16; (g) 𝐸4
𝑔𝑠

= E0,±4 + 

E0,±8 + E0,±16 + E0,±32; (h) 𝐸5
𝑔𝑠

=E0,±4 + E0,±8 + E0,±16 + E0,±32 + E0,±64 with OAM indices of the 

geometric sequence ln = 2n+1. 

 

Supplementary Notes 2: DNRDE induced by synthetic OAM light fields 

In mathematical picture, we first establish a fixed Cartesian coordinate system with the 



light field’s center O as the origin and the four hotspots at x- and y-axes, respectively. 

For the first point P1, as shown in Figs. 1 and 2(e) in the main text, the noncoaxial 

RDSs can be obtained using the principle of linear Doppler effect due to a shared origin 

[S3]: 

𝑓𝑅𝐷𝐸−1
𝑙𝑛 =

𝑓0|𝑣⃗ 1| cos 𝜏1 sin𝛽

𝑐
                     (S6) 

where 0 /f c =  is the light frequency with the light speed c. |𝑣 1| = Ω|𝑅⃗ 1| is the linear 

velocity of the point P1, in which |𝑅⃗ 1|  stands for the rotating radius of P1 versus 

rotating axis O , and   denotes the skew angle of the Poynting vector with respect 

to light axis, which is written as 𝛽 = 𝑙𝑛𝜆/2𝜋|𝑟 1| [1, S4, S5]. 1cos  shown in Fig. 2(e) 

can be represented with vector 𝑅⃗ 1 and vector 𝑟 1 through an angle transform: 

cos 𝜏1 =
𝑅⃗ 1⋅𝑟 1

|𝑅⃗ 1||𝑟 1|
                         (S7) 

As a result, Eq. (S4) can be rewritten as: 

𝑓𝑅𝐷𝐸−1
𝑙𝑛 =

𝑙𝑛Ω(𝑅⃗ 1⋅𝑟 1)

2𝜋𝑟1
2                        (S8) 

Given the point coordinates ( )0,0O , P1 ( )1, 0r , and ( )cos , sinO d d  , we can obtain 

the distance vector: 𝑟 1 = 𝑂𝑃⃗⃗⃗⃗  ⃗1 = (𝑟1, 0), 𝑑 = 𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (𝑑𝑐𝑜𝑠𝛾, 𝑑𝑠𝑖𝑛𝛾), 𝑅⃗ 1 = 𝑂′𝑃⃗⃗⃗⃗⃗⃗  ⃗1 =

𝑟 1 − 𝑑 = (𝑟1 − 𝑑𝑐𝑜𝑠𝛾,−𝑑𝑠𝑖𝑛𝛾). Hence, 𝑅⃗ 1 ⋅ 𝑟 1 = 𝑟1(𝑟1 − 𝑑𝑐𝑜𝑠𝛾). Consequently, the 

noncoaxial RDS at the point P1 can be manifested as the following form: 
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Similarly, for the point P2, we can also garner the noncoaxial RDS as: 
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 It is worth noting that Eqs. (S7) and (S8) describe the DNRDE induced by a single 

OAM mode nl . To obtain the detectable RDE, the magnitudes of these shifts can be 

doubled by taking into account the beating effect between conjugated OAM light modes 



of nl . As a consequence, assuming that the distances from P1 and P2 to the origin are 

the same, denoted by 1 2r r r= =  , the dual-point noncoaxial RDE of the customized 

OAM light field at these two points can be expressed as follows: 
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Supplementary Note 3: Experimental setup for the generation of synthetic OAM 

light fields and real-time detection of rotating axis orientations 

 

Figure S3 Experimental setup. MO: micro-objective; SMF: single-mode fiber; Col: collimator; LP: 

linear polarizer; HWP: half wave plate; M: mirror; SLM: spatial light modulator; L3: lens; L4: 

micro-lens array; BS: beam splitter; CCD: charge coupled device; APD: avalanche photodetector; 

OSC: Oscilloscope; PC: personal computer. 

 

Supplementary Notes 4: Experimental generation of synthetic OAM light fields E2 

In experiment, we here select the customized OAM light field 2E  as the emitted light 

field to detect the orientations of rotating axes. As illustrated in Eq. 1 and Fig. 2, the 

generation of 2E  requires superposing 4 -order and 8 -order OAM light fields. In 

our experiment, we use a versatile complex-amplitude-modulated technique to encode 

2E   as the computer-generated hologram, which is then loaded onto the SLM. This 



enables us to experimentally produce the emitted light field. In Fig. S4, we show the 

encoded holograms (Figs. S4(a)-(c)), the generated OAM light fields (see Figs. S4 (d) 

and (e)) as well as the customized OAM light field (see Fig. S4 (f)), respectively. As 

displayed, the experimental results are basically consistent with that of numerical 

simulations. It is worth noting that there is a salient difference between the experimental 

and simulated results for 2E  in Figs. 2(c) and S4 (f): the presence of the sidelobes 

sandwiched between four hotspots. However, we are able to effectively eliminate these 

side lobes using an energy threshold approach. Specifically, we set a threshold for the 

energy of the light field, and any values below this threshold are set to null, while that 

exceeding the threshold are maintained at a constant level. Here, we choose a threshold 

value of 40% of the maximum normalized energy of the light field, which is the 

experimental criticality for the presence/absence of sidelobes. Since we are only 

interested in the information carried by the main lobes, such eliminations have no 

impact on the eventual detection results of rotating axis orientations. 

 

Figure S4 The loaded holograms on the SLM and experimentally produced light fields for (a) and 

(d): ±4-order light field; (b) and (e): ±8-order light field as well as (c) and (f): customized OAM 

light field E2. 

 

Supplementary Notes 5: Signal post-processing 

Here, we perform the signal post-processing on the Doppler signals to remove noise 



and smooth the data, by exploiting the spectral subtraction (SS) method [S6] and a 

designed Wiener filter (WF). We provide a schematic diagram of this processing in Fig. 

S5. Specifically, the pose-processing involves representing the noisy signal ( )y n  as 

the sum of a clear signal ( )x n   and an additive noise ( )n n  , which allows for the 

extraction of the clear signal and removal of the noise: 

( ) ( ) ( )y n x n n n= +                      (S13) 

where, n  stands for time index. Our goal using the SS method is to obtain the power 

spectrum of the clear signal ( )x n . To achieve this, we transform the temporal signals 

in Eq. S11 from time domain into frequency domain via the discrete Fourier transform 

(DFT). Since the SS method works on segmented data, we need to divide ( )y n  into 

K equal data chunks using a window function (e.g., a hamming window). The noise 

( )n n   can be actively selected from the segmented data. After calculation, the 

transformed noisy signal within the frequency domain can be given by: 

( ) ( ) ( )k k kY X N  = +                   (S14) 

in which k  denotes the k -th date point in the data chunks. As a result, the power 

spectrum of clear signal can be manifested through power SS technology, as: 

( ) ( ) ( )
2 2 2ˆ

k k kX Y a N  = −                (S15) 

Here, ( )
2

ˆ
kX   and ( )

2

kY   are estimated power spectrum and the power spectrum 

of the noisy signal, respectively.  ( ) ( )
1

2 2
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−

=

=   denotes time-averaged 

power spectrum of the noise ( )n n . The scaling factor of a  defines the magnitude of 

noise subtraction. After implementing the power SS according to Eq. S13, multiple 

negative values might arise in the estimated power spectrum, which does not be 

practical. As such, another parameter of b , named noise floor, can be introduced to 

convert the negative values into useful positive values. Such that Eq. S6 can be 

rewritten with the noise floor as: 
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The introduction of the scaling factor a   and the noise floor b   can effectively 

improve the signal quality by achieving de-noising and the smoothing of estimated 

power spectrum. Noting that we here choose 4a =   and 1%b =   to carry out the 

power SS.  

In practical signal post-processing, this estimated power spectrum is a ( )1K L −  

matrix ( L   is the sample length) as the functions of time and frequency due to the 

segmented data used, which is not convenient for the comparison with the prescribed 

frequency threshold. To display the estimated power spectrum as a function of 

frequency, we first combine the estimated power spectrum with the phase spectrum 

( )Y   of noisy signal to reconstruct the estimated time signal ( )x̂ n , and then we 

perform the inverse DFT. Afterwards, we design a WF using the power spectra of the 

noisy signal and estimated power spectrum of the clear signal: 

( )
( )

( )

2

2

ˆ
k

k

X
H

Y





=                        (S17) 

As a result, the estimated amplitude spectrum ( )X    of the signal ( )x̂ n   can be 

filtered using the convolution with this filter applied to the amplitude spectrum ( )Y   

of the noisy signal. Then, the estimated power spectrum can be obtained by the 

operating norm of ( )X  . 

( ) ( ) ( )
2 2

X H Y  =                    (S18) 

 



 

Figure S5 The schematic of signal post-processing. This processing can be achieved by the SS 

method and a designed Wiener filter. 

 

Supplementary Notes 6: Performance analyses (measurement sensitivity, range, 

resolution, and precision) and the influence of synthetic OAM light fields on these 

performance indicators 

Note that the quantitative performance analyses including measurement sensitivity, 

range, resolution, and precision are important for practical applications. As such, we 

respectively formulize and analyze these performance indicators for detecting rotating 

axis orientations as follows:  

(1) First of all, the measurement sensitivity can be quantified as the minimum detectable 

power Pmin on the detectors when the signal-to-noise ratio (SNR) equals approximately 

to one. The SNR can be defined as the ratio of the maximum signal peak (Smax) to the 

maximum noise peak (Nmax) within detectable frequency bandwidth range, which can 

be described as: 

SNR max

max

S

N
=                        (S19) 

These two peak values can be found in the Doppler power spectrum shown on the 

oscilloscope display screen. At this time, the received power can be detected by a power 

meter. After multiple measurements (~20 times), the statistical power value can be 

recognized as the final result, which characterizes the system sensitivity. For this point, 

we use the synthetic OAM field field of E2 as an example for illustration, and then we 

measure the minimum detectable power Pmin at the detection end, which is roughly 0.63 

μW under our experimental conditions.  



(2) As a proof-of-principle experiment, the detectable distance is currently restricted 

into the laboratory area range ~ 4 m. However, the detectable distance in practical 

applications can be significantly extended. Theoretically, the minimum detectable 

distance can be determined by the Rayleigh range when considering the propagation 

divergence case. As an example, the synthetic OAM light fields E2 give the Rayleigh 

range approximately represented as 2 22 //Rz kr r ==  , where 2.5r   mm being 

the radius of the beam waist of E2 measured by a beam profiler, and 532 =  nm 

representing the wavelength of the light field. As a result, the minimum detectable 

distance can be calculated as: 
3 2 9(2.5 10 ) / (532 10 ) 36.9Rz  − −=      m. In more 

practical cases, this detectable distance can be further extended to a few kilometers  

when using existing single-photon detection technology [S7, S8].  

(3) The rotating axis is determined by the measured dual-point noncoaxial rotational 

Doppler shifts, and hence its resolution depends on the frequency resolution Δf within 

the Doppler spectrum. The frequency resolution within the frequency domain Δf rests 

with sampled time length T data within the temporal domain following Δf=1/T. The 

sampled time length T = 0.1 s throughout our experiments, and thus the frequency 

resolution is 10 Hz. As a consequence, the resolution of the measured rotating axis 

orientations can be estimated with Eqs. (2) and (3) in the main manuscript under certain 

experimental conditions. After calculation, the resolution of rotating axis orientations 

is roughly 5.42°. 

(4) In our original manuscript, we define the measurement precision of the rotating axis 

orientations by the absolute measurement error, i.e., the absolute value between 

theoretical and measured values: 

th measured  −=                       (S20) 

It is worth to mention that the smaller the absolute error, the higher the measurement 

precision, vise verse. As shown in Fig. 6(e) in the main manuscript, the measured 

maximum absolute error is less than 2.23° within full orientation range after 

implementing the statistical measurement.  

  In addition, in order to illustrate the influence of synthetic OAM light fields on these 



performance indicators (i.e., sensitivity, distance, resolution and precision), we measure 

the minimum detectable power Pmin, detection distance z, frequency resolution Δf and 

measurement absolute error η when emitting synthetic OAM light fields 𝐸2, 𝐸3
𝑎𝑠, 𝐸4

𝑎𝑠, 

𝐸5
𝑎𝑠  and 𝐸5

𝑔𝑠
  corresponding to optical modal filters ±8, ±12, ±16, ±20, ±32, 

respectively. Here, the superscripts of ‘as’ and ‘gs’ denote the arithmetic and geometric 

sequences, respectively, corresponding to the first and the last rows in Fig. S1. The 

measured emitted light fields and uploaded optical modal filters on SLM1 and SLM2 

are shown in Fig. S6, respectively, and the corresponding measured results are 

illustrated in Fig. S7. Figure S7(a) shows that the minimum detectable power Pmin 

displays a slightly increased trend with the synthetic OAM light fields and uploaded 

optical modal filters. This might be due to that the uploaded high-order modal filter 

leads to the larger dual-point Doppler frequency shifts according to Eqs. (2) and (3) in 

the main manuscript, thereby moving the signal peak away from the low-frequency 

noise domain. This further enhances the SNR, and hence improves the sensitivity of the 

system. In Fig. S7(b), it shows that all the detectable distances can be up to 4 meters in 

our laboratory area conditions (6.5m5m3.3m) when altering the emitted light fields 

and modal filters. And thus, the detectable distance within laboratory conditions has 

nothing to do with the synthetic OAM light fields. Since the frequency resolution Δf is 

dominated by the sample time length T, the synthetic OAM light fields have no impact 

on the resolution of measured rotating axis orientations, as shown in Fig. S7(c). 

Moreover, we measure the rotating axes within full orientations according to Fig. 6(e) 

when varying the synthetic OAM light fields and optical modal filters. The 

corresponding maximum absolute errors η are shown in Fig. S7(d). We can see that the 

measured errors almost maintain constant. This can be understood that when SNR 

within the Doppler spectrum is larger than 1, the measured accuracy is just determined 

by frequency resolution, rotation motor stability and the distance between rotating and 

light axes, whereas if the SNR is less than 1, the signal is submerged into noises making 

the measurement system disabled, thereby leading to larger errors and lower precisions. 

In these situations of Fig. S7(d), all SNRs are larger than 1, and the variations of 



synthetic OAM light fields are insensitive to the measurement precision. 

 

Figure S6 The measured light field distributions of (a1) 𝐸2; (a2) 𝐸3
𝑎𝑠; (a3) 𝐸4

𝑎𝑠; (a4) 𝐸5
𝑎𝑠; (a5) 

𝐸5
𝑔𝑠

as well as corresponding optical modal filters of (b1) ±8; (b2) ±12; (b3) ±16; (b4) ±20; (b5) 

±32 uploaded on SLM1 and SLM2, respectively.  

 

Figure S7 The dependences of system performance on synthetic OAM light fields. (a) The 

minimum detectable power Pmin, (b) distance z, (c) frequency resolution Δf and (d) maximum 

absolute error η when emitting synthetic OAM light fields (the labels of the first row on the 

horizontal axis) of 𝐸2 , 𝐸3
𝑎𝑠 , 𝐸4

𝑎𝑠 , 𝐸5
𝑎𝑠  and 𝐸5

𝑔𝑠
 as well as uploading optical modal filters (the 

labels of the last row on the horizontal axis) of ±8, ±12, ±16, ±20 and ±32, respectively.  

 

Supplementary Notes 7: Demonstration of the tilt angle of the Poynting vector 

versus light axis 

In fact, the Laguerre-Gaussian modes as the solution of the Helmholtz equation under 

paraxial approximation, are conceived as a standard optical vortex beam, which carries  



well-defined OAM. In the cylindrical coordinate ( ), ,r z  , the linear momentum 

density, i.e., the Poynting vector components can be given by [S4, S5], 

2 2 2

0 0 022
| | | ,| | |

( )
,r z

R

krz
s

l

z
u u k u

z r
s s

 


 
=  = =

+  
蝌 ?        (S21) 

where and k are the angular frequency and the wave number of the light, respectively, 

and 
Rz   is the Rayleigh range of the Gaussian beam. For a well-collimated beam, 

0rs  and / zs s gives the tilt angle between the Poynting vector versus the beam axis 

to be /l kr . It’s clear that for the OAM light field, the Poynting vector is not coincide 

with the beam propagation direction anymore. 

 

Supplementary Notes 8: General method to choose proper optical modal filters for 

probing 

The principle of choosing the modal filter severely depends on the magnitude of 

outputted on-axis light intensity. Namely, the higher the output on-axis intensity, the 

better the probing sensitivity. For illustration, we select E2 field (see the field 

distributions in Figs. S1(a) and (e) as well as S4(f)) as an example to illustrate our 

selection criteria. We first simulate a set of optical modal filter Φi = E0,±l from ±1 to ±10 

orders and calculate the on-axis intensity when projecting them onto the incident E2 

field. The results are displayed in Fig. S8. We can see that except for ±4 and ±8-order 

optical modal filters, the on-axis intensity for other cases are all null. (see the center of 

the red cross mark) That is, we just need to choose the optical modal filter with OAM 

indices consistent with phase-conjugate OAM light fields used to create EN. In order to 

further improve the probing sensitivity, it is more judicious to choose a modal filter 

meeting higher SNR. We can measure the SNRs in turn and compare the magnitude of 

|𝑙| √𝑆𝑁𝑅⁄  when uploading the selected modal filters (±4 and ±8-orders). The larger 

the value of |𝑙| √𝑆𝑁𝑅⁄ , the higher the detection sensitivity. To summarize, the general 

method to choose optical modal filters can be divided as two steps: First, to find OAM 

indices of phase-conjugate OAM light fields within EN; second, to select the OAM 



indices with the largest value of |𝑙| √𝑆𝑁𝑅⁄   in these candidates for high-sensitive 

probing. 

 

Figure S8 A general method to choose proper optical modal filters. The first and third rows 

represent the uploaded optical modal filters on SLM1 and SLM2, whereas the second and last 

rows give the corresponding on-axis intensity distributions (see only the central intensity of red 

cross mark). Here, E2 is selected as the emitted light field as an example for illustration.   
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