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Supplementary Figure S1 Optical path simulation of the proposed microscope. a—c Simulated
optical path of the microscope at magnifications of 9%, 13x, and 18x. d—f Local enlarged images
of the simulated optical path at magnifications of 9%, 13x, and 18x.
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Supplementary Figure S2 Simulation of modulus of the optical transfer function (OTF) at
different object heights and magnifications. a, b Modulus of the OTF at different object heights
and magnification of 9x in the centre and edge channels. ¢, d Modulus of the OTF at different
object heights and magnification of 13x in the centre and edge channels. e, f Modulus of the OTF
at different object heights and magnification of 18x in the centre and edge channels. (T and S
represent tangential plane and sagittal plane, respectively. 0 mm, 0.3 mm, etc are object heights.)
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Supplementary Figure S3 Reduction in resolution and illumination due to spectroscopic
effects. a—c¢ Simulated resolution reduction at the field-of-view (FOV) intersection of centre and
edge channels at magnifications of 9%, 13x, and 18x. d—f Simulated fraction of unvignetted rays at
different FOVs (or object heights) with magnifications of 9%, 13x, and 18x.
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Supplementary Figure S4 Depth of fields at different magnifications. a, b Corresponding

spatial frequency curves when the modulus of the OTF is 0.1 in the centre and edge channels at

different working distances and magnification of 9%. ¢, d Corresponding spatial frequency curves

when the modulus of the OTF is 0.1 in the centre and edge channels at different working distances

and magnification of 13x. e, f Corresponding spatial frequency curves when the modulus of the

OTF is 0.1 in the centre and edge channels at different working distances and magnification of

18x.



Supplementary Figure S5 Fabrication of the proposed microscope. a Real image of the
proposed microscope. b, ¢ Real images of the assembly and adjustment mechanisms. d Real
image of the compound eye lens. e Real image of the liquid lens driver. f Real image of the
seven-channel data stream transmission port.
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Supplementary Figure S6 Resolution test at different magnifications. a Resolution test results
of the centre channel at magnifications of 9%, 13, and 18x. b Resolution test results of the edge

channel at magnifications of 9%, 13x, and 18x.



Supplementary Figure S7 Verification experiments of FOV overlapping. a Image of the
resolution test target. b Schematic diagram of placing the resolution test target in the boundary
area between FOV #1 and #2. ¢ Schematic diagram of placing the resolution test target in the
boundary area between FOV #2 and #3. d—f Captured images of FOV #1 and #2 when placing the
resolution test target in the boundary area between FOV #1 and #2 at magnifications of 9%, 13x,
and 18x. g—i Captured images of FOV #2 and #3 when placing the resolution test target in the

boundary area between FOV #2 and #3 at magnifications of 9%, 13x, and 18x.
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Supplementary Figure S8 Resolution test with different working distances (WDs) at initial
magnification of 9%. a Resolution test results of the centre channel with different WDs at initial
magnification of 9x. b Resolution test results of the edge channel with different WDs at initial

magnification of 9x.
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Supplementary Figure S9 Resolution test with different working distances (WDs) at initial
magnification of 13x. a Resolution test results of the centre channel with different WDs at initial
magnification of 13x. b Resolution test results of the edge channel with different WDs at initial

magnification of 13x.
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Supplementary Figure S10 Resolution test with different working distances (WDs) at initial
magnification of 18x. a Resolution test results of the centre channel with different WDs at initial
magnification of 18x. b Resolution test results of the edge channel with different WDs at initial

magnification of 18x.
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Supplementary Figure S11 Distortion correction by the nonuniform-distortion-correction
algorithm. a Chequerboard image vertex markers. b Triangle area division of chequerboard image.
¢ Correspondence between the marked vertices in the image and the vertices of the standard
chequerboard. d Correspondence between the marked triangle area in the image and the standard
chequerboard triangle area. e, f Chequerboard images before and after distortion correction. g, h
Sample images before and after distortion correction.
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Supplementary Figure S12 Vignetting processing by the composite patching algorithm. a
Image after distortion correction at magnification of 13x. b Image obtained by filling the pixels at
the edge of the centre FOV image at magnification of 9x into the orange area in Supplementary
Fig. S12a. ¢ Initialization offset process of patching the vignetted boundary around the edge FOVs
using PatchMatch algorithm. d Mask image for marking the area to be filled around the edge
FOVs. e Final image after vignetted boundary processing.
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Supplementary Figure S13 Principle and structure of the microfluidic chip for separation of
particles. a Principle of the microfluidic chip for separation of particles. b Real image of the
microfluidic chip.
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Supplementary Figure S14 FOV of an ordinary microscope. a Chequerboard image captured
by the commercial microscope with 10x objective lens. b Microfluidic chip image captured by the
commercial microscope.
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