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Abstract  

This document provides supplementary information for “Dynamic 3D shape reconstruction 

under complex reflection and transmission conditions using multi-scale parallel single-pixel 

imaging”.  
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Supplementary Note S1: Theoretical basis of PSI algorithm 

The emerging SI technique has the property to retrieve a 2D image only using a single-

pixel detector. And the convergent lens in this technique to focus and collect the varying 

projected structured light is equivalent to the generated mixed illumination. Therefore, 

it is introduced into the 2D sensor to separate the direct and global illumination in the 

traditional triangulation system. Every pixel of the used camera is treated as a single-

pixel detector and SI imaging algorithm is performed in parallel. And then the position 

of different illumination components for this pixel can be separated and located in the 

projecting plane according to the Helmholtz reciprocity. So, this technique is named 

parallel single-pixel imaging (PSI). 

 
Figure S1. Reconstruction process of existing PSI methods for 3D shape measurement under 

global illumination. a, Projected Fourier basis pattern in PSI. b, 3D reconstruction process of PSI 

algorithm.  

Light transport equation is used to describe the imaging process in PSI: 

1 1

0 0

( , ) ( , ) ( , ; , ) ( , ),
p p

n m

c c c c p p c c p p

v u

I u v A u v h u v u v P u v
− −

= =

= +                   (S1) 

in which, I(uc,vc) is the detected intensity of the mixed illumination for any camera pixel 

(uc,vc); A(uc,vc) denotes the ambient illumination into the same pixel; P(up,vp) is 

projected intensity for pixel (up,vp) in projecting plane with the resolution of m×n pixels; 

and h(up,vp;uc,vc) denotes the light transport coefficient between pixels (uc,vc) and 

(up,vp), which describes the light intensity transferring ratio between any two pixels in 



projecting and imaging planes. In PSI, a series of Fourier basis patterns are projected 

as shown in Fig. S1(a), and every camera pixel is treated as a single-pixel detector to 

retrieve a 2D image. In this condition, 2D light transport coefficient h(up,vp;uc,vc) for 

pixel (uc,vc) exactly equals to the SI imaging result of this pixel, which can be solved 

by Fourier single-pixel imaging algorithm 1. The required projected sinusoidal patterns 

with average a and contrast b are described as:    

( , ; , ) cos[2 ( ) ], 1,2,3... ,i p p u v u p v p iP u v f f a b f u f v i N = + + + =                (S2) 

where fu and fv are the frequency component of the projected patterns in u and v 

directions, respectively, which can be further calculated by fu=k/m, k=0,1…m-1 and 

fv=l/n, l=0,1…n-1. N is the phase-shifting step and δi= 2(i -1)/N. And extending Eq. (S1) 

into Eq. (S2), we obtain:  
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And the Fourier spectrum can be reconstructed using the collected information under 

different illumination:   
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After doing fast inverse Fourier transform, the required 2D light transport coefficient 

h(up,vp) for each camera pixel (uc,vc) can be obtained: 

1( , ; , ) [ ( , ; , )] / 2 .p p c c u v c ch u v u v F H f f u v b−=                           (S5) 

As shown in Fig. S1(b), the obtained direct and global illumination components are 

separated in the projecting plane for specific camera pixel (uc,vc). According to 

precondition in triangulation that for any given camera pixel, the direct illumination 

component from the light emitter will locate on the epipolar determined by this pixel 2. 

Therefore, epipolar constraint and subpixel searching are applied to further locate the 

accurate position of the direct illumination component. By this way, the unique 

corresponding relationship between projecting and imaging planes can be established 

and 3D shape measurement can be achieved through stereo vision algorithm3 in mixed 

illumination conditions. However, for the PSI algorithm, the number of required 

Fourier basis patterns for one reconstruction, which is inefficient for fast measurement. 



Supplementary Note S2: Comparative discussion between existing local 

region extension (LRE) method and presented MS-PSI method. 

In Jiang’s work4, they wisely proposed local region extension (LRE) method to 

significantly decrease the required number of the proposed patterns in the naive single-

pixel imaging (SI) technique. In the LRE method, it is assumed that any pixel on the 

camera can only receive light from a local region on the projector, which makes the 

visible region for each pixel confined in a local region. Based on this point, the core 

idea of LRE method is dividing the full resolution of the projector into several local 

regions. And after that, the Fourier basis patterns are generated with the size of local 

region and duplicated to fill other local regions in the projecting plane as shown in Fig. 

S2(a). In the reconstruction stage, the local region is treated as a unit to perform SI 

algorithm. In such way, the number of projected patterns will be largely reduced with 

the decrease in the size of the encoding region. But, the precondition of LRE 

reconstruction theorem is that, if the period of the periodic extension patterns covers 

the visible region, the light transport coefficients can be perfectly reconstructed. To 

guarantee this precondition, “coarse to fine” localization procedure is performed. Two 

groups of full-resolution illumination patterns with vertical and horizontal orientations 

are firstly projected to detect and obtain the size of the projected reception region using 

the 1D Fourier slice theorem as shown in Fig. S2(a). The maximum external rectangle 

of the reconstructed light transport coefficient among all pixels will be determined as 

the size of the local region. And then projected patterns can be generated and duplicated 

in each local regions for further fine localization. As a result, this strategy needs extra 

projected patterns for determining the size of local region, decreasing the measuring 

efficiency. More importantly, coarse localization will be redone and the projected 

patterns will be updated and reprojected when the tested scene changes, which makes 

it difficult and even impossible to apply PSI in dynamic measurement.   



 

Figure S2. Illustration of principles of the a, LRE method and b, MS-PSI method. 

As a contrast, the proposed MS-PSI method makes no assumption and requirements 

on light reflection condition of the measured scene as shown in Fig. S2(b). The 

projected plane is equally dividedly into local regions with any scales which only 

depends on the detecting accuracy we want. Even the location of the illumination 

component exceeds one local region, the MS-PSI method can accurately locate the 

position of the direct illumination component owing to the position invariant theorem. 

Therefore, the fixed generated illumination patterns with a small number are used to be 

projected for dynamic measurement, which breaks the assumption and rules in existing 

methods. 

 

 

 

 

 

 

 

 

 

 



Supplementary Note S3: Implementation of the depth-constrained 

localization 

In the proposed method, only vertical and horizontal Fourier basis patterns are projected 

as shown in Fig. S3(a). But, if only two Fourier slices are reconstructed, extra 

ambiguous points will occur in the back projection image as shown in Fig. S3(b). And 

in traditional method, Fourier slices with extra direction is required to reject ambiguous 

points which decreases measuring efficiency. In addition, the whole epipolar is used to 

find the direct component, so the wrong discrimination and location of the direct 

illumination component easily happens when serval candidate points disturbed by noise 

fall around the epipolar. However, in actual measurement, measuring depth range 

corresponds the length-limited epipolar and limited measuring depth is often calibrated 

to guarantee stable measuring accuracy. Hence, standard planes at the closest (plane 1) 

and farthest (plane 2) position in measuring range are used to generate length-limited 

epipolar and eliminate wrong points out of the defined range as shown in Fig. S3(b). It 

can be found that p1 in plane 1 and p2 in plane 2 corresponds to the constrained epipolar 

lined by Pp1(up1,vp1) and Pp2(up2,vp2), which can eliminate the ambiguous candidate. To 

calculate the length-limited epipolar for each pixel, plane 1 and plane 2 are measured 

using the traditional Gray code plus phase shifting method 5 by projecting vertical and 

horizontal fringe patterns in the calibration process as shown in Fig. S3(c). The absolute 

phase v and h can be solved and the accurate pixel position of the direct illumination 

in projecting plane for each camera pixel can be determined and recalibrated using: 
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in which, m/fu and n/fv are the fringe period of sinusoidal patterns in two directions. 

Hence, for any camera pixel, two points Pp1(up1,vp1) and Pp2(up2,vp2) can be located in 

the projecting plane, and the direct illumination will lie on the connecting line between 

these two points in the measuring volume. In this way, searching area for direct 



illumination can be constrained into a short line, which can avoid ambiguous points in 

dual-slice localization and speedup the searching process.  

 
Figure S3. Implementation of depth-constrained localization. a, Projected two-direction Fourier 

basis patterns for measurement. b, Illustration of depth-constrained dual-slice localization. c, 

Projected structured light patterns for mapping corresponding points between projecting and 

imaging planes in calibration process.  

 

 

 

 

 

 

 

 

 



Supplementary Note S4: Proof of the position invariant theorem 

Position invariant theorem: If the projecting patterns is equally divided and 

regenerated into subregions with any scale in PSI, the location of the detected direct 

illumination component remains unchanged in the reconstructed image using MS-PSI. 

 
Figure S4. Illustration of position invariant theorem. a, Illumination pattern generation when 

s=2. b, Single-pixel imaging for each illumination subregion, respectively. c, Multi-scale single-

pixel imaging for the whole illumination region. 

To prove the position invariant theorem, we summarize the whole process of the multi-scale 

single-pixel imaging algorithm as shown in Fig. S4. Firstly, the projecting vertical and 

horizontal phase-shifting sinusoidal patterns with different frequencies are generated and 

duplicated into s×s subregions (s=2 in this case), and the projected patterns can be described 

as: 

( , ; , ) cos[2 ( ) ], 1,2,3... .i p p u v u p v p iP u v f f a b f u f v i N = + + + =          (S8) 

N is chosen as 3 for dynamic measurement. And then all generated patterns are projected onto 

the tested surface in sequence. The camera collects the reflected light from another angle and 

each pixel in camera is treated as a single-pixel detector to retrieve the collected light field. The 

corresponding light transport coefficient ℎ𝑠
𝑟 (𝑢𝑝, 𝑣𝑝; 𝑢𝑐, 𝑣𝑐 ) in each subregion is used to 

describe the transporting path and intensity of the light and detected intensity 𝐼𝑖
𝑟

(𝑓𝑢, 𝑓𝑣; 𝑢𝑐, 𝑣𝑐) 

in a specific camera pixel (uc,vc) from different subregion can be represented as: 
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It should be noted that although projected patterns are the same in each subregion, the 

light transport coefficient ℎ𝑠
𝑟 is different, which means the emitted light from different 



position in each subregion will be detected by the pixel in camera. To illustrate this 

phenomenon, it is assumed that each subregion can illuminate and be collected 

independently, and then the generalized light transport coefficient 𝑡𝑠
𝑟(𝑢𝑝, 𝑣𝑝; 𝑢𝑐, 𝑣𝑐) for 

each subregion can be reconstructed as shown in Fig. S4(b). However, in actual 

measurement, all subregions illuminate simultaneously and the fact is that the detected 

intensity is the superposition of illumination from all subregions. Therefore, the 

reconstructed spectrum of actual generalized light transport coefficient 𝑡𝑠(𝑢𝑝, 𝑣𝑝; 𝑢𝑐, 𝑣𝑐) 

is described as: 
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After expanding this formula and we can obtain:  
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It indicates the reconstructed spectrum of the actual generalized light transport 

coefficient is the sum of the spectrum of each subregion illumination independently. 

And after inverse Fourier transform, we can get: 

2 21 1 1 2 1 2( , ) [ ( , )] / 2 = [ ( , )+ ( , )+ ( , )] / 2 ( , )+ ( , )+ ( , ).s s
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At this point, we can draw an important lemma: the generalized light transport coefficient 

of full-field illumination is the sum of that with each subregion illumination independently. 

With this lemma, it can be explained why the location of the detected direct illumination 

component remained unchanged in the reconstructed image using MS-PSI as shown in Fig. 

S4(c). In MS-PSI, one subregion rather than whole region is our reconstructed target, but 

illumination from all subregions makes contributions to detected intensity. Due to the same 

projecting patterns in each subregion, it can be equivalent that all the subregions are periodically 

moved and merged in a unified coordinate system and the retrieved image is a superposition of 

the generalized light transport coefficient for each subregion as proved in Eq. (S12). After 

obtaining the actual generalized light transport coefficient 𝑡𝑠(𝑢𝑝, 𝑣𝑝; 𝑢𝑐, 𝑣𝑐) in subregion, 



the full-field generalized light transport coefficient t(up,vp;uc,vc) can be obtained by 

duplicating and stitching 𝑡𝑠(𝑢𝑝, 𝑣𝑝; 𝑢𝑐, 𝑣𝑐): 

[( , ; , ) = ( , ; , ) ].p p c c m n s p p c c m n

s s

Stitchint u v u v t u v ug v
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                      (S13) 

Whether the direct illumination component locates in the chosen reconstructed 

subregion or not, the periodically duplication will move it back to the original position 

which can be aligned with the full-field SI reconstructing result as shown in Fig. S4(c). 

Therefore, the position invariant theorem has been proved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note S5: Simulation on traditional spectrum component 

optimization and MS-PSI optimization 

To demonstrate the sampling and locating optimization ability, simulation on 

traditional spectrum component optimization and MS-PSI optimization is performed. 

As shown in Fig. S5(a), the light transport coefficient with discrete energy distribution 

is generated and it contains three illumination regions as shown in Figs. S5(b) and S5(c), 

which indicates the detected energy for this pixel comes from three positions in 

projecting plane.  

 

Figure S5. Simulation on traditional spectrum component optimization and MS-PSI method. 

a, Simulated discrete light transport coefficient. b-c, Amplified images of the subregions in a. d-g, 

Increasement of the sampling coefficients for image optimization using traditional method. h-k, 

Corresponding optimization result using traditional method. l-o, Decrease of the imaging scale for 

image optimization using MS-PSI method. p-s, Corresponding optimization result using MS-PSI 

method. t, Optimization result comparison using different scale factor s. 

After applying Fourier transform, two Fourier slices with different sampling rates are 

used to reconstruct the generalized light transport coefficient t(up,vp;uc,vc). It can be 

shown that when the number of sampling coefficients is small (32×32 and 128×128) as 



shown in Figs. S5(d) and S5(e), the locations between region 2 and region 3 cannot be 

distinguished as shown in Figs. S5(h) and S5(i). With the increasement of the sampling 

rate as shown in Figs. S5(f) and S5(g), the gap between two regions become clear and 

can be distinguished as shown in Figs. S5(j) and S5(k). Simulation results show 

traditional spectrum coefficients optimization method improve the detection resolution 

by increasing the number of the spectrum coefficients, which is not suitable for efficient 

3D measurement. 

As a contrast, the proposed MS-PSI method improves the detection resolution by 

reducing the scale of the imaging region. By this way, the sampling rate of the 

reconstructed spectrum can be equivalently increased with the fixed spectrum 

coefficients (32×32) as shown in Figs. S5(l)- S5(o). And it results in higher imaging 

resolution and aids in distinguishing the region 2 and region 3 as shown in Figs. S5(p)-

S5(s). Furthermore, the location of the detected direct illumination component 

remained unchanged in the reconstructed image using MS-PSI as shown in Fig. S5(t), 

which has been proved in position invariant theorem as seen in Supplementary 

Information Note S4. Therefore, the desired direct illumination component with higher 

resolution can be located using the MS-PSI method with limited spectrum coefficients, 

which is superior in dynamic measurement. 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note S6: Performance comparison between FPP and MS-

PSI on surfaces with different materials 

To compare measuring performance between FPP and MS-PSI on surfaces with 

different materials, a scene contains a white paper, ice and candle was measured. Two-

frequency 3-step phase-shifting patterns (ωl=4, ωh=16) are projected in FPP as shown 

in Fig. S6(a), and the geometric-constrained two-frequency phase-shifting method 5 and 

calibration are used to obtain absolute phase and depth map as shown in Figs. S6(b) 

and S6(c).  

 

Figure S6. Comparative experiment on scene with subsurface scattering. a, Captured two 

groups of sinusoidal patterns using FPP. b, Reconstructed phase by FPP. c, Reconstructed depth 

map by FPP. d, Captured two groups of Fourier basis patterns in MS-PSI. e, Reconstructed depth 

map by MS-PSI. f, Reconstructed generalized light transport coefficient for points on different types 

of surfaces.  

It can be found that reconstructed errors gathered in the strong scattering regions with 

low fringe contrast. This is because FPP method highly depends on the fringe quality 

and contrast for high-accuracy shape reconstruction. As a contrast, five groups of two-

direction Fourier basis patterns (c=5, =8, 16, 24, 32, 40) are projected in MS-PSI 



method as shown in Fig. S6(d), and the scale factor s=4. The reconstructed depth map 

is given in Fig. S6(e). And the generalized light transport coefficient for three specific 

points on white paper, ice and candle are shown in Fig. S6(f). It indicates that single 

and energy-concentrated illumination component occurs on diffuse paper surface while 

it becomes a diffuse spot on ice and candle surface due to the subsurface scattering. In 

addition, indirect illumination emerges on ice surface because of multilayer reflection. 

However, the defocus of the spot causes tiny influence on positioning the gravity center 

of the direct component 6 and depth-constrained dual-slice localization can assist to 

exclude ambiguous indirect component. So, the complete and accurate depth map and 

3D cloud data can be reconstructed by MS-PSI. Results demonstrated the proposed 

method has better performance on strong scattering regions compared with traditional 

FPP method because measuring accuracy of MS-PSI depends on locating accuracy of 

illumination component rather than phase accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note S7: Optimal parameters determination of MS-PSI for 

dynamic measurement 

The scale factor s and the number of unidirectional Fourier coefficient c are two key 

parameters for MS-PSI, which directly determines the measuring accuracy and 

efficiency in dynamic scenes. Therefore, we performed the comparative experiments 

and analysis to choose the optimal parameters for MS-PSI. As shown in Fig. S7(a), the 

standard ceramic plane with micro-level accuracy was placed at the back in the 

measured scene to evaluate the measured accuracy.  

 
Figure S7. Optimal parameters determination of MS-PSI for dynamic measurement. a, 

Measured scene. b, Reconstructed result using different scale factor s. c, Error distribution in 

rectangle region of standard ceramic plane for results using different s when c=10. d, Error curve in 

the labeled line of standard ceramic plane for results using different s when c=10. e, Relationship 

between measured errors and varying scale factor s when c=10. f, Error distribution in rectangle 

region of standard ceramic plane for results using different c when s=8. g, Relationship between 

measured errors and varying Fourier coefficient number c when s=8. 

In this experiment, the resolution of the projected patterns is 512×512 pixel and 

firstly, Fourier coefficient number c is fixed to 10 which means 10 groups of Fourier 

basis patterns for each slice direction are generated. And MS-PSI algorithm is 

performed with varying s form 1, 2, 4 to 8. The corresponding results are shown in Fig. 

S7(b), and it can be found that periodic error on ceramic plane is suppressed and data 

integrity on the edge of conduit is improved with the increasement of s. The root-mean-



square error (RMSE) on the box area and height distribution in the labeling line of the 

results are further calculated as shown in Figs. S7(c) and S7(d), which quantitively 

shows the accuracy improvement. Results are consistent with the theoretical and 

simulated analysis. The RMSE is 0.0210 mm when s=8 and the measuring accuracy 

gets stable as shown in Figs. S7(e). So, s is determined as 8 in final dynamic experiment. 

To further choose optimal c to balance the measuring accuracy and speed in dynamic 

measurement, error distribution with varying c is shown in Fig. S7(f) and the 

relationship between RMSE and sampling rate (defined as the ratio between c and half 

width of the projected pattern’s resolution) is shown in Fig. S7(g). It indicates 

measuring accuracy dramatically decreased when c is smaller than 5 and the RMSE is 

0.0334 mm when c=5, which is satisfied for most measuring requirement. Therefore, c 

is determined as 5 to pursue higher measuring efficiency in dynamic scene, and the 

final measuring accuracy of depth measurement is 0.0334 mm in our experiments. 
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