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High-performance, non-negative gradient constraint dwell-time

solution algorithm based on the Lagrange regularization method

We employed a dwell-time solving algorithm rooted in the linear equation model

to tackle the problem of a time-varying TIF relative to the machining position. By

integrating the fundamental concept with the non-rotational symmetry characteristics

of the controllable spiral magnetorheological polishing TIF, the following linear

system of equations was established:
Figure S1 is a schematic diagram of the discrete grid division of the linear

equations model. As shown in Figure S1, the initial surface error is divided into

discrete grids, and a series of surface error control points ( , )i i ip x y can be obtained,

where the coordinates of the its surface shape error control point is ( , )i ix y . The

surface error value corresponding to this point is ih and we define the control area as

ia according to a certain area division rule. The dwell position of the TIF in the

figuring process is defined as dwell point ( , )k k kl x y , where the dwell time at the j

dwell point is jt . The surface shape error control point vector is defined as

1[ , , , , ]Ti mP p p p  


, the surface shape error value vector is 1[ , , , , ]Ti mH h h h  


,

the dwell point vector is 1[ , , , , ]Tk nL l l l  


, and the dwell time vector is

1[ , , , , ]Tj nT t t t  


.

Figure S1 The diagram of discrete grid division of linear equations model



We define the removal vector as 1[ , , , , ]k k k k T
i mF F F F  


. This represents the

amount of material removed at each surface-shape-error control point when the TIF is

located at the dwell point kl . The removal efficiency
k
iF at each surface shape error

control point ip is

1
( , )

in

k
i

Si

F TIF x y dxdy
a   (S1)

where ( , )TIF x y represents the spiral TIF at different positions and inS is the

area where the control area ia is inside the TIF. When the surface error control

point ip is located outside TIF, 0k
iF  .

We define the removal matrix 1[ , , , , ]k n
m nF F F F 

  
  as follows:
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The amount of material removed due to the surface shape error is the sum of the

products of the unit material removal amount and the dwell time at each surface shape

error control point. Consequently, the process of determining dwell time transforms

into an inverse problem of solving the large sparse matrix equations presented below:
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The final machining residual error is shown in (S4), which is the surface shape

error after error correction of the controllable spiral magnetorheological polishing.



m nres H F T   (S4)

In this study, we employed the lsqlin function to solve large sparse linear matrix

equation problems and obtain constrained nonnegative solutions [33, 34]. This

method ensures that the calculated dwell times exceed the minimum dwell time

achievable based on the machine tool speeds. The lsqlin function utilizes a

constrained linear least-squares algorithm, with the iteration process grounded in a

preconditioned conjugate gradient method. The initial point for lsqlin was set to 1,

with an upper limit of 4 and a lower limit of 0.02, ensuring compliance with the speed

requirements for machine tool motion.

However, because the existing removal matrix is a severely ill-conditioned large

sparse matrix, when the removal matrix m nF  is ill-conditioned with a very large

condition number, any small error is amplified in the dwell-time results, leading to

non-smooth solutions. The change in spatial posture of the TIF at different dwell

points in the controllable spiral TIF causes the removal matrix m nF  to become

"disordered,” resulting in poorer smoothness of the dwell time under the current dwell

time solving methods. The existing lsqlin function solves the dwell-time model while

minimizing residual error during the solution process. However, in actual machine

tool operations, the dwell-time implementation model must convert dwell time into a

precise and smoothly achievable dwell speed. This means that the dwell time

distribution should be continuous and smooth. A common approach to address this

issue is to incorporate a regularization term. In our algorithm, we introduced a

Laplacian regularization term. The Laplacian operator is a second-order differential

operator primarily employed in image processing for tasks such as image

enhancement and edge detection, among other applications. The Laplacian

transformation of a typical binary function is defined as:
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For ease of discrete processing, the Laplacian operator is generally expressed in the

discrete form:

2 [ ( 1, ) ( 1, ) ( , 1) ( , 1)] 4 ( , )f f x y f x y f x y f x y f x y           (S6)

The Laplace operator effectively characterizes the gradient distribution features of

a function. Incorporating it into the dwell time solving process allows for gradient

constraints on the dwell time. By introducing dwell-time gradient control parameters

and utilizing a specific operator, a smoother and more stable solution for dwell time

can be achieved. By seeking a dwell time solution with a smooth gradient within the

dwell time distribution domain, we ultimately obtain a dwell time distribution that

meets high dynamic requirements.

Based on the discrete form of the Laplace operator, we adopted the template form

of the Laplace operator and chose the template L as follows:
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(S7)

The original lsqlin function solves the least-squares algorithm with the objective of

minimizing the L2 norm of the residuals, as shown in Equation (S8). However, the

objective function is enhanced by incorporating a Laplacian operator, as indicated in

Equation (S9), where LL represents the regularization factor. Furthermore, by adding

dwell-time gradient constraint conditions to the model, we achieve a highly dynamic

dwell-time framework. Mathematically, this model can be expressed as a constrained

optimization problem in Equation (S10). By integrating the dwell time gradient

constraints, the lsqlin function balances the trade-off between the RMS surface shape

error and smoothness during the solving process to determine the minimum value.

Once the regularization parameter is established and the preset convergence accuracy

is achieved, the algorithm terminates.
2

2
min{ : }m nArg resnorm F T H lb T ub     (S8)
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