
1 

 

SUPPLEMENTARY INFORMATION 
Hyperpixels: Pixel Filter Arrays of Multivariate Optical Elements 
for Optimized Spectral Imaging 
 
Calum Williams¹, Richard Cousins², Christopher J. Mellor³, Sarah E. Bohndiek⁴⁵, and 
George S. D. Gordon⁶* 
 
¹Department of Physics, University of Exeter, Exeter, EX4 4QL, United Kingdom 
²Nano- and Micro-scale Research Centre, University of Nottingham, University Park, 
Nottingham, NG7 2RD, UK 
³School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 
2RD, UK 
⁴Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, 
Cambridge, CB3 0HE, UK 
⁵Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, 
Cambridge, CB2 0RE, UK 
⁶Optics & Photonics Research Group, Department of Electrical and Electronic Engineering, 
University of Nottingham, Nottingham, NG7 2RD, UK 
 

*Correspondence: George Gordon (george.gordon@nottingham.ac.uk) 

 
 

A conventional Fabry-Perot narrowband filter (etalon) is composed two parallel mirrors separated 
by a finite thickness cavity (spacer layer, usually an insulator). Light incident upon the structure 
undergoes partial reflection and transmission through the mirrors. Constructive interference 
conditions within the resonant cavity give rise to a series of sharp transmission peaks and through 
control of parameters such as cavity optical thickness and material selection, the wavelengths of 
the transmissive light can be tuned [1,2]. Two common Fabry-Perot filter designs exist: (i) metal-
insulator-metal (MIM), and (ii) all-dielectric (Figure 1). For a planar MIM case, the generalized 
constructive interference condition (at normal incidence) is give as, 

 
 

Figure S1. Simple Fabry-Perot filter: metal-insulator-metal vs. all-dielectric structure. DBR = distributed 
Bragg reflector (i.e. dielectric broadband mirror). N = number of bi-layers 
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2 𝑅𝑒[𝑛̃]𝑑 = 𝑚𝜆 +  𝜙             𝑚 = 1,2,⋯    

 

where 𝑛̃ is the complex refractive index of the cavity (insulator), where the Re part determines 
phase velocity and the Im part determines loss, d is the cavity physical thickness, m is an integer, 
𝜆 is the wavelength of light, and 𝜙 is the phase shift due to effect of reflection of the mirror 
materials. Note that this phase shift is significant for metallic mirrors compared to all-dielectric 
interferaces. Due to the presence multiple dispersive and lossy materials in a realistic MIM system 
(i.e. noble metals, adhesion layers etc.) it’s often necessary to implement numerical modelling 
approaches. For 1D thin-film multilayer designs, the transfer matrix method (TMM) is traditionally 
implemented, also used in this work (through TFCalc and Lumerical STACK simulations). To 
determine the reflectance of a lossy periodic structure, recursive propagation matrices are used 
[1-3]. For M thin-film slabs, M+1 interfaces, with reflection coefficients, 𝜌𝑖, at each interface 
(assuming normal incidence) is given by, 
 

𝜌𝑖 =
[𝑛̃(𝜔)]𝑖−1 − [𝑛̃(𝜔)]𝑖
[𝑛̃(𝜔)]𝑖−1 + [𝑛̃(𝜔)]𝑖

        𝑖 = 1,2,⋯𝑀 + 1    

 

where 𝑛̃(𝜔)𝑖 is the complex refractive associated with the i-th slab. The propagation transfer matrix, to 

describe the forward and backward electric field propagation within the multilayer stack [2], is given by  
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where 𝛿𝑖 = 𝑘𝑧𝑖𝑙𝑖  , is the complex phase thickness, 𝑘𝑧𝑖 = 𝑘0[𝑛̃𝑒𝑓𝑓]𝑖 , where 𝑘0 = 2𝜋 𝜆0⁄ , is the free-

space wavenumber and 𝜏𝑖 = 1 + 𝜌𝑖 is the transmission coefficient. Hence, every recursion 

calculation is computed for every wavelength. The reflection response, considering the 
wavelength-dependent fields at each interface, given generally by 𝛤𝑖 = 𝐸𝑖+ 𝐸𝑖−⁄  , is described by 
[1,2]: 
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With the transmission response counterpart given,  
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The multiplicative interaction of these responses give rise to the total transmission from the stack 
– which generally is composed of, 
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The physical thickness of each layer is iterated in the simulations, along with material selection 

for the capping and adhesion layers. 𝑛̃𝑀= the complex index of Ag mirror, and 𝑛̃𝐼= the 
complex index of the photoresist (ARN-7720, AllResist) insulator. Due to the dispersive 
and lossy behaviour of Ag and Ti (adhesion), the filtering performance is sub-optimal. 
That is, in comparison to negligible loss dielectric counterpart structures which exhibit 
near unity transmission peaks with narrowband filtering, the MIM structures exhibit 
broader passbands, reduced transmission peaks and non-broadband performance i.e. 
the nature of interband transition in the UV-blue part of the waveband mean transmission 
peaks are not equal in max value, with background signal is inversely proportional to 
wavelength. Figure 2 overviews the total transmission response of conventional all-
dielectric thin-film bandpass filters as thin film structure changes. Figures 3, 4 and 5 
overview a comparative MIM bandpass filter structure, and show the non-idealised 
performance.  
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Figure S2. (a) Structure of a conventional thin-film all-dielectric Fabry-Perot bandpass filter. (b) 
Simulation of the transmission response of two geometries: top – a Bragg mirror only, which exhibits a 
broad stopband with a function of the difference in index between H-L layer materials; bottom – by 
introducing a cavity (defect) between two Bragg mirrors a passband arises, with a constructive 
interference condition. This leads to the widespread optical bandpass filter. (c) The effect of increasing 
the number of H-L bi-layers on the transmission response results in a narrower passband and lower out 
of band rejection. (d) Increasing the cavity thickness red-shifts the centre wavelength of the passband, 
explained by the change in the constructive interference condition. Note: these resonances are of 1st 
order here, and the 2nd order of the thickest cavity can be observed in the blue part of the spectrum.    
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Figure S3. Simulated total transmission response of multi-layer MIM structures using TFCalc. (a) 
Transmission response of idealized structure with varying cavity thickness variation, structure: Glass 
(bulk): Ag (mirror)[30 nm]: MgF2 (capping)[15 nm]: photoresist (cavity)[~]: Ag mirror[30 nm]: MgF2 
(capping)[50 nm]: air. (b) Same as (a), but with structural addition of 1 nm Ti adhesion layer underneath 
each mirror layer, which introduces loss thereby broadening the passbands and lowering the peak 
transmission. (c) Total transmission response of building the MIM multi-layer structure (one layer at a 
time) to show the effect of adding each layer.    

 
 

Figure S4. (a) Simulated total transmission response of MIM structure—as in Figure 2(b)—with 
increasing Ag thickness, which demonstrates the effects of: introducing a necessary mirror reflective 
phase shift to generate a constructive inference condition thereby giving rise to a bandpass, but also 
with increasing thickness introducing more loss resulting in a lower transmission peak, this tradeoff is 
considering part of the design process for the final MSFA filter thicknesses and end imaging 
requirements (i.e. optical throughput vs. narrowness of response). (b) Effect of increasing the Ti 
adhesion layer thickness on a MIM structure’s transmission (with fixed mirror and cavity thicknesses). 
The increase in Ti thickness dampens the resonance due to additional loss, thereby significantly cutting 
the transmitted signal. Tradeoff for practical MSFA due to needing the mirrors to adhere to the 
substrates while maintaining a sufficiently strong signal.  
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Figure S5. Effect on total transmission response of a MIM structure with variable thickness MgF2 
capping (encapsulation) layer atop Ag mirror 1 (a) and Ag mirror 2 (b). Increasing the capping thickness 
on mirror 1 (facing the cavity) introduces an additional optical thickness thereby red-shifting the 
wavelength. Whereas on mirror 2, negligible spectral shift, but there is an optimal thickness based on 
impedance matching with air. Note that additional practical consideration is also minimum thicknesses 
of a capping layer of Ag in order to prevent tarnishing / oxidation over longer periods of time.  

 
 

Figure S6. Experimental dose test thickness results of undiluted ARN-7720.13 e-beam resist (without 
paper specific dilution) [spin speed 5,000 rpm; bake 85degC, 2min; 1 min development] obtained 
through AFM measurements of isolated chequerboard arrays.  

 
 

Figure S7. Comparison of thickness map of (a) hyperpixel design, vs. (b) fabricated hyperpixel (AFM 
micrograph). There is sub-pixel variation (for example due to the nature of the resist dissolution process) 
which gives rise to broadened passbands, however there is general agreement between maps.  



7 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure S8. Illustration of how varying the ρ parameter in our simulation generates realistic, randomized 
spectra with controllable degrees of correlation. The average mean-squared error (MSE) between each 
pair of spectra is shown, decreasing from 0.112 at ρ = 0.00 to 0.006 at ρ = 0.95. 
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Figure S9. Simulation results demonstrating the signal-to-noise ratio (SNR) advantage of hyperpixel 
designs over optimized bandpass filter designs in edge cases. The simulations consider a scenario 
where spectra are highly similar (ρ = 0.95, average mean-squared error = 0.006) compared to the 
baseline case (ρ = 0.00, average mean-squared error = 0.112). See Supplementary Figure 8 for 
example spectra. When data noise levels approaches zero (SNR gets large), conventional bandpass 
filters provide an SNR unmixing advantage of 3.7 dB compared to hyperpixels. However, as data noise 
increases to realistic levels (SNR < 20 dB) , the SNR advantage of hyperpixels grows to 7 dB over 
bandpass filters, highlighting their robustness under adverse conditions. The simulations also examine 
the case of mismatched illumination, in which hyperpixels and bandpass filters are optimized for a flat-
spectrum light source but are tested with a broadband, non-flat halogen source (ThorLabs OSL2). Under 
low data noise, hyperpixels provide a 4.5 dB SNR unmixing advantage over optimized bandpass filters, 
increasing to over 9 dB, further demonstrating the robust of hyperpixels in these edge cases. 
 
 
 
Despite these variations, 
hyperpixels consistently demonstrate a significant SNR advantage compared to optimized bandpass 
filters. The inset 
provides a closer view of the red-boxed region for detailed comparison. 
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Figure S10. Graph showing impact of simulated spectral unmixing with normalized (min = 0, max = 1) and 
non-normalized (max and min both in range [0,1]) spectra.  Normalized spectra actually represent a more 
challenging practical case, with the gap between band pass and hyperpixels growing by >2 dB.  In both 
cases, however, there is still a clear performance advantage of hyperpixels over conventional bandpass 
filters. 
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