Supplementary information

for the manuscript

Optical percutaneous needle biopsy in oncology

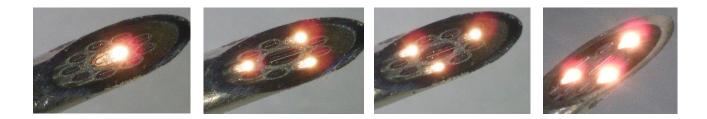
Elena V. Potapova 1 , Viktor V. Dremin 1,2 , *, Valery V. Shupletsov 1 , Ksenia Y. Kandurova 1 , and Andrey V. Dunaev 1

¹ Research and Development Center of Biomedical Photonics, Orel State University, Orel 302026, Russia

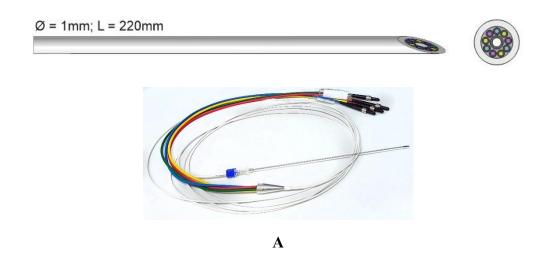
² College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK

^{*} $\underline{v.dremin1@aston.ac.uk}$

A



В


Figure S1. Intraoperative optical diagnostic systems: (A) fluorescence and diffuse reflectance spectroscopy system; (B) time-resolved fluorescence spectroscopy system.

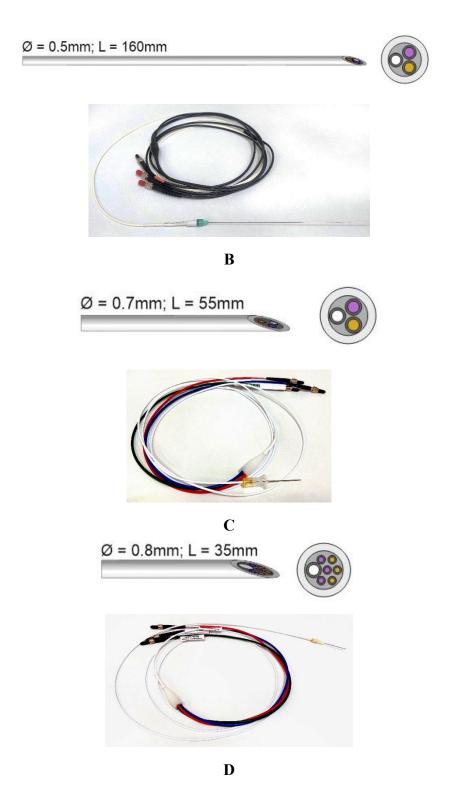


Figure S2. Optical biopsy during standard percutaneous needle biopsy of liver neoplasms

Figure S3. Performance testing of the channels of a fibre-optic probe compatible with Chiba 17.5 G puncture biopsy needles by sequentially connecting a white light source to 4 outputs (1 central receiving fibre and 3 illumination channels, 3 fibres each)

Figure S4. The photos of the different types of fine-needle fibre-optic probes described in the article: (A) the probe for liver biopsy, compatible with 17.5 G puncture needles; (B) the probe for pancreas biopsy, compatible with 21 G puncture needles; (C) the probe for breast biopsy, compatible with 19 G puncture needles; (D) the probe for breast biopsy without the puncture needle.