Supplementary information

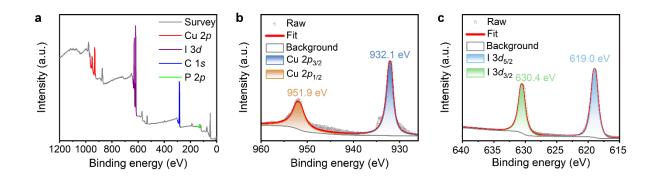
Large-area, High-resolution, Flexible X-Ray Scintillator Film Based on a Novel 0D Hybrid Cuprous Halide

Dandan Li¹, Linghang Kong^{2,3}, Liping Feng², Jie Su¹, Xing Guo¹, Hui Peng³, Xue Zhao^{1,4}*, Hanyuan Ding¹, Xueyan Chen¹, Fei Zhang⁵, Linyuan Lian⁵, Zhifeng Shi⁵, Pengfei Fu⁶, Zhenhua Lin¹, Jingjing Chang¹*

¹School of Microelectronics, Xidian University, Xi'an 710071, China.

²State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University Xi'an 710072, China.

³State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.


⁴Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.

⁵Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450052, China

⁶Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences 518055, China

^{*}zhaoxue@xidian.edu.cn

^{*}jjingchang@xidian.edu.cn

Fig. S1 X-ray photoelectron spectroscopy (XPS) spectra of (MTP) $_2$ Cu $_4$ I $_6$. **a** (MTP) $_2$ Cu $_4$ I $_6$ survey, **b** Cu 2p, and **c** I 3d.

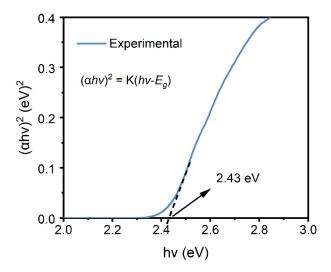


Fig. S2 (MTP)₂Cu₄I₆ bandgap derived from the *Tauc* plot.

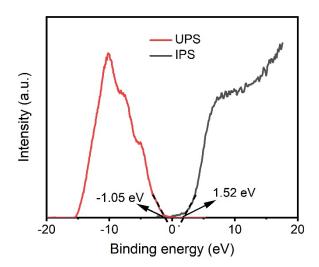
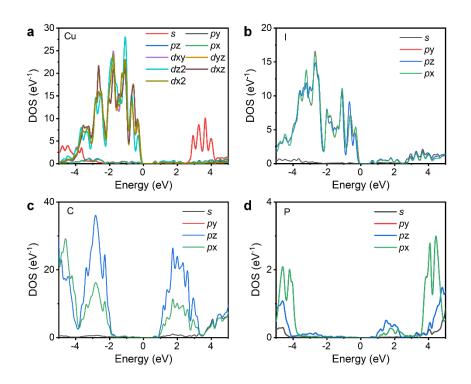
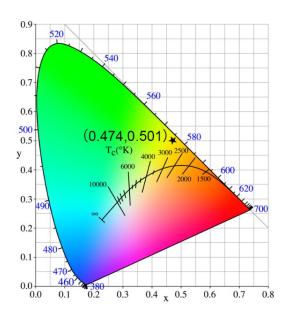
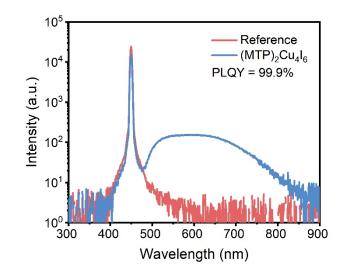
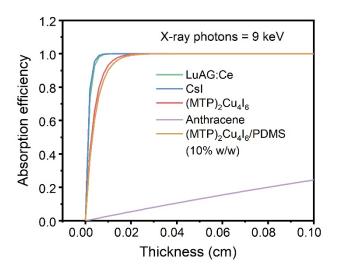
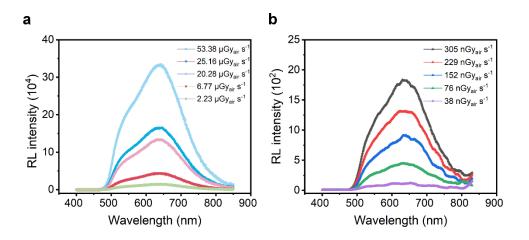


Fig. S3 Ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy spectra of the $(MTP)_2Cu_4I_6$.


Fig. S4 Density of states of a Cu, b I, c C, and d P elements with energies from -5 to 5 eV.


Fig. S5 Commission Internationale de l'Eclairage (CIE) chromaticity coordinates (black star) of emissions measured for (MTP)₂Cu₄I₆ samples in the CIE1931.

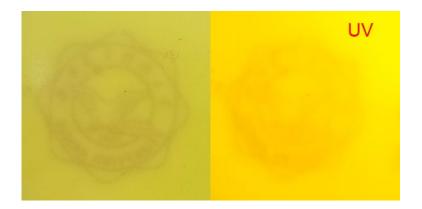
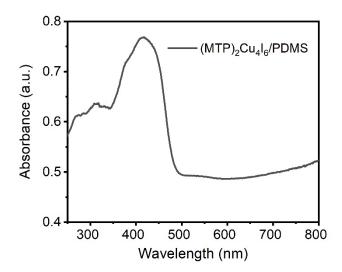
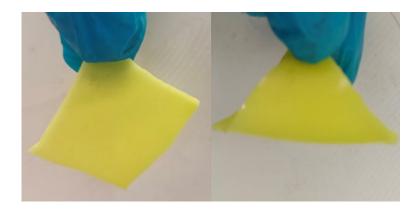
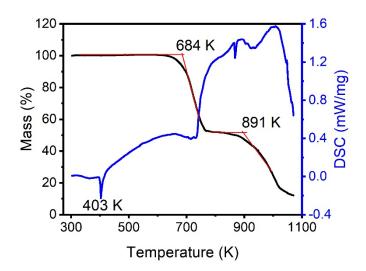

Fig. S6 Photoluminescence quantum yield (PLQY) curve of (MTP)₂Cu₄I₆ crystals. The reference curve is measured by placing a blank quartz plate in the integrating sphere.

Fig. S7 Absorption efficiency of (MTP)₂Cu₄I₆, (MTP)₂Cu₄I₆/PDMS (10% w/w), CsI, LuAG:Ce, and anthracene as a function of thickness.

Fig. S8 Radioluminescence spectra of (MTP)₂Cu₄I₆ single crystals under **a** high, and **b** low-dose rate conditions.

Fig. S9 Photographs of (MTP)₂Cu₄I₆/polydimethylsiloxane (PDMS) composite film under ambient light and 365 nm ultraviolet (UV) irradiation.


Fig. S10 UV-visible absorption spectrum of (MTP)₂Cu₄I₆/PDMS composite film.

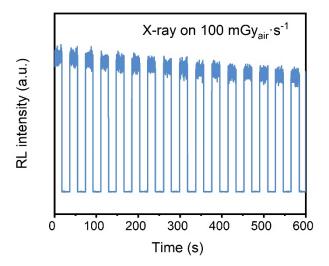

 $\label{eq:Fig.S11} \textbf{Fig. S11} \ \ Planar \ and \ nonplanar \ (MTP)_2Cu_4I_6/PDMS \ \ scintillator \ film \ \ images \ \ under \ \ ambient \ light \ conditions.$

Fig. S12 Photograph of the standard tungsten edge.

Fig. S13 Thermogravimetric analysis and differential scanning calorimetry curve of (MTP)₂Cu₄I₆ powder.

Figure S14 Emission photostability at 620 nm for the (MTP)₂Cu₄I₆/PDMS film following exposure to cyclical X-rays at a dose rate of 100 mGy_{air} s⁻¹.

Table S1. Crystal information from Checkcif of (MTP)₂Cu₄I₆ characterized by single-crystal X-ray diffraction.

Chemical formula	$(C_{19}H_{18}P)_2Cu_4I_6$		
Temperature / K	193		
Crystal system	Trigonal		
Space group	R3c		
a / Å	13.91190 (2)		
b / Å	13.91190 (2)		
c / Å	39.85970 (10)		
α/°	90		
eta / °	90		
y / °	120		
$V/\text{\AA}^3$	6680.9392 (3)		
$M_{\rm r}$	1570.21		
$\rho_{\rm calc}/\left({\rm g~cm}^{-3}\right)$	2.342		
μ / mm^{-1}	35.679		
Z	6		
F(000)	4368.0		
	-17<=h<=17,		
Index ranges	-17<= <i>k</i> <=17,		
	-50<= <i>l</i> <=50		

Table S2. Atomic ratios of C, P, Cu, and I in (MTP)₂Cu₄I₆ measured by XPS.

Elements	Atomic %	
С	73.01	
P	4.28	
Cu	8.92	
I	13.79	
Total	100.00	

Table S3. Comparison of PL properties and scintillation performance of reported cuprous halide scintillators.

G : 4'11 4	PLQY	Lifetime	Light yield	Detection limit	Ref.	
Scintillator	(%)	(µs)	(photons MeV ⁻¹)	$(nGy_{air} s^{-1})$		
(MTP) ₂ Cu ₄ I ₆	99.9	2.18	43800	37.6	This	
					work	
[BzTPP] ₂ Cu ₂ I ₄	44.2	1.93	27700	352	1	
[BAPMA]Cu ₂ Br ₅	53.4	50.2	43700	74	2	
[ETPP] ₂ Cu ₄ Br ₆	94.2	32.89	53600		3	
[ETPP]CuBr ₂	65.2	2.75	58000	453	3	
C ₉ H ₂₀ NCuBrI	99.5	2.52	25000	40.4	4	
$(TBA)CuCl_2$	92.8	28.7	23400		5	
(TBA)CuBr ₂	80.5	232.05	24100		5	
(DIET) ₃ Cu ₃ Cl ₃	69.2	1.3	6000		6	
(DIET) ₃ Cu ₃ Br ₃	39.3	0.6	20700	189	6	
[Rb(18-crown-	02.4	2.4	10600	458.3	7	
$6)]_{2}Cu_{4}I_{6}$	93.4					
Rb_2CuCl_3	99.4	11.3	16600	88.5	8	
K_2CuBr_3	87.0	64.3	23800	132.8	9	
Cs ₃ Cu ₂ I ₅	91.2	0.97	32000		10	

BzTPP = Benzyltriphenylphosphonium; BAPMA = *N,N*-Bis(3-aminopropyl) methylamine; ETPP = Ethyltriphenylphosphonium; TBA = Tetrabutylammonium; DIET = 1,3-Diethyl-2-thiourea.

Table S4. Comparison of spatial resolution of reported cuprous halide scintillators.

Scintillator	Spatial resolution (lp mm ⁻¹)	Ref.
(MTP)2Cu4I6/PDMS	10.2	This work
[BzTPP] ₂ Cu ₂ I ₄ /PVP	4.9	1
[BAPMA]Cu ₂ Br ₅ /PDMS	15.8	2
C ₉ H ₂₀ NCuBrI/PDMS	5.6	4
(TBA)CuBr ₂ /PVDF	3.0	5
(DIET) ₃ Cu ₃ Br ₃ /PDMS	11.7	6
$(C_8H_{20}N)_2Cu_2Br_4$ wafer	9.5	11
Rb ₂ CuBr ₃ /PS	1.7	12
Cs ₃ Cu ₂ I ₅ /PDMS	6.8	13

References

- 1. Lin, N. et al. 0D hybrid cuprous halide as an efficient light emitter and X-ray scintillator. *Laser & Photonics Reviews* **17,** 2300427 (2023).
- 2. Liu, Y. H. et al. Zero-dimensional hybrid cuprous halide of [BAPMA]Cu₂Br₅ as a highly efficient light emitter and an X-ray scintillator. *ACS Applied Materials & Interfaces* **15**, 20219-20227 (2023).
- 3. Li, D. Y. et al. Reversible triple-mode photo- and radioluminescence and nonlinear optical switching in highly efficient 0D hybrid cuprous halides. *Chemistry of Materials* **35**, 6598-6611 (2023).
- 4. Mao, P. et al. Organic-inorganic hybrid cuprous halide scintillators for flexible X-ray imaging. *ACS Applied Materials & Interfaces* **14**, 22295-22301 (2022).
- 5. Lian, L. Y. et al. Highly luminescent zero-dimensional organic copper halides for X-ray scintillation. *Journal of Physical Chemistry Letters* **12**, 6919-6926 (2021).
- 6. Han, K. et al. Promoting single channel photon emission in copper (I) halide clusters for X-ray detection. *Advanced Optical Materials* **10**, 2200865 (2022).
- 7. Almushaikeh, A. M. et al. Zero-dimensional Cu(I)-based organometallic halide with green cluster-centred emission for high resolution X-ray imaging screens. *Chemical Communications* **59**, 4447-4450 (2023).
- 8. Zhao, X. et al. All-inorganic copper halide as a stable and self-absorption-free X-ray scintillator. *Journal of Physical Chemistry Letters* **11**, 1873-1880 (2020).
- 9. Gao, W. R. et al. One-dimensional all-inorganic K₂CuBr₃ with violet emission as efficient X-ray scintillators. *ACS Applied Electronic Materials* **2**, 2242-2249 (2020).
- Cheng, S. L. et al. Zero-dimensional Cs₃Cu₂I₅ perovskite single crystal as sensitive X-ray and γ-ray scintillator. *Physica Status Solidi-Rapid Research Letters* 14, 2000374 (2020).
- Su, B. B. et al. Ceramic wafer scintillation screen by utilizing near-unity blueemitting lead-free metal halide (C₈H₂₀N)₂Cu₂Br₄. Advanced Functional Materials 33, 2210735 (2023).

- 12. Han, L. L. et al. Environmentally stable one-dimensional copper halide based ultraflexible composite film for low-cost X-ray imaging screens. *Chemical Engineering Journal* **430**, 132826 (2022).
- 13. Li, N. et al. Flexible, high scintillation yield Cs₃Cu₂I₅ film made of ball-milled powder for high spatial resolution X-ray imaging. *Advanced Optical Materials* **10**, 2102232 (2022).