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Abstract

The thin-film optical inverse problem has attracted a great deal of attention in science and industry, and is widely
applied to optical coatings. However, as the number of layers increases, the time it takes to extract the parameters
of thin films drastically increases. Here, we introduce the idea of exploiting the structural similarity of all-optical
neural networks and applied it to the optical inverse problem. We propose thin-film neural networks (TFNNs) to
efficiently adjust all the parameters of multilayer thin films. To test the performance of TFNNs, we implemented a
TENN algorithm, and a reflectometer at normal incidence was built. Operating on multilayer thin films with 232
layers, it is shown that TFNNs can reduce the time consumed by parameter extraction, which barely increased with
the number of layers compared with the conventional method. TFNNs were also used to design multilayer thin
films to mimic the optical response of three types of cone cells in the human retina. The light passing through
kthese multilayer thin films was then recorded as a colored photo.

Introduction

Optical inverse problems, such as optical metrology and
inverse optical design, have always been a hot topic
because of their wide applications in science and
industry' . For conventional frameworks of the thin-film
optical inverse problem, two spaces exist: the parameter
space and the data space. All the possible parameters of
thin films (e.g., thickness and refractive index as a function
of wavelength) form the parameter space, while the optical
responses of thin films to different parameters (e.g.,
reflectance spectra) form the data space. To solve a typical
thin-film optical inverse problem, the initial parameters in
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the parameter space are selected as the starting point, and
then the optical responses in the data space are computed
by electromagnetic simulations. To determine the direction
of updates of the optical response in the simulation, the
simulated response is compared with the target response,
i.e., the measured spectrum for optical metrology and the
desired spectrum for inverse optical design. By conducting
several electromagnetic simulations in each direction of the
parameter space and comparing the differences between the
spectra obtained from these simulations, the parameter
changes required to update the optical response can be
determined. This process was performed iteratively until
the simulated response matched the target response. For
simple thin films with a few layers, conventional
approaches are effective because of the low-dimensional
parameter space and reduced calculations. However, with
the rapid increase in the number of layers and parameters,
accurate thickness characterization and the design of
multilayer thin films become more difficult owing to the
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high-dimensional =~ parameter space and lengthy
calculations. To satisfy the demand for fast and convenient
solutions to the optical inverse problem, a new framework
to solve this problem is required.

Fundamentally, the optical inverse problem is a
parameter optimization process of nanophotonic structures.
Recent studies on all-optical neural networks (NNs) have
established a correlation between multilayer nanophotonic
structures and multilayer NNs by exploiting their structural
similarity’", making it possible to optimize the parameters
of nanophotonic structures during the learning process
based on backpropagation. Therefore, common NN
training tasks, such as handwritten digit recognition with
the MNIST dataset’ and human pose estimation’, may be
achieved with all-optical NNs at a high precision. In this
paper, we introduce the idea of exploiting the structural
similarity of all-optical NNs for application to the optical
inverse problem. Thin-film NNs (TFNNs) are proposed to
optimize and extract all the multilayer thin film parameters
during the backpropagation process. As the input of
TFNNs, incident light fields with normalized source
spectra propagate through every film following the
calculation steps in the transfer matrix method. Similar to
the weights and activation functions when NNs connect
two neural layers, transfer matrices characterize the
propagation process of the light fields in TFNNs between
two thin-film layers. The outputs of TFNNs are the
reflectance and transmittance spectra. The thickness and
refractive index of each layer in the thin films become the
TFNN parameters. Then, in the new framework, the
thickness and refractive index in each layer in the thin
films can be optimized through the training process based
on backpropagation in TFNNs, which is very similar to the
process in NNs.

In this paper, we first explain the principle of the optical
inverse problem with the NN-like framework. Mapping
from the data space to the parameter space is implied in the
training process of TFNNs. Then, the mathematical details
of TFNNs are demonstrated by exploiting their structural
similarity with multilayer NNs. In the section on optical
metrology, the reflectance of thin films at normal incidence
is measured as the target for training TFNNs. For
monolayer thin films, both the thickness and refractive
index of the layer are optimized. The multilayer thin films
are treated as TFNNs to optimize all the thickness in
hundreds of layers. The time required for optimization is
significantly shortened compared with conventional
methods (e.g., for thin films with 232 layers, conventional
approaches take 67.498 s per iteration; our method takes
0.924 s per iteration). In the section on inverse optical
design, the design of multilayer thin films based on TFNNs
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is introduced. Then, we designed and fabricated three types
of multilayer thin films that mimic three types of cone cells
in the human retina. An image-forming system is built,
which records the light passing through these multilayer
thin films as a colored photo.

Results

Framework inspired by all-optical neural networks

Fig. 1 shows the parameter space and data space in
conventional approaches. A group of thin-film parameters
is represented by small spheres in the parameter space,
while the spectrum of the thin films is represented by
rectangular solids in the data space. Each small sphere
corresponds to a rectangular solid through electromagnetic
simulations, as shown by the arrows from the parameter
space to the data space. For a group of parameters
represented by the red sphere, its convergence direction to
the minimum point in the parameter space was obtained by
additional electromagnetic simulations at the neighboring
points denoted by the blue sphere. The number of
neighboring points required is proportional to the
dimensions of the parameter space.

For the new framework inspired by all-optical NNs, the
input of TFNNs is a normalized source spectrum, and their
output is the reflectance or transmittance spectrum of the
thin films, denoted as R =|r’, where , is the Fresnel
reflectance or transmittance. Thus, the spectrum of thin
films represented by the rectangular solid in the data space
is converted into the output of TFNNs. A group of thin-
film parameters represented by a small sphere in the
parameter space is converted into the parameters of
TFNNSs, as shown in Fig. 1. Based on the above analogies,
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Fig. 1 The framework inspired by all-optical neural networks. The
framework of the solution inspired by all-optical neural networks (left panel)
and its correlation with the conventional framework (right panel). For
conventional frameworks, to obtain the convergence direction of the red sphere
(current parameters), an additional simulation is required at the blue sphere
(neighboring parameters) to compare the difference in their spectra, marked as
red and blue rectangular solids, respectively. For our new framework in the left
panel, the convergence direction was obtained through the backpropagation

process of TFNNs during training; hence, no additional simulation is required.
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the backpropagation process of TFNNs can be established
to obtain the convergence direction of every parameter in
one calculation if the structural similarity between thin
films and NN is exploited.

Structural similarity between thin films and NNs

To compare the structure of thin films and NN,
diagrams of multilayer thin films and multilayer NNs are
shown in Fig. 2. For thin films, there is an interface
between the neighboring layers; for NNs, there is a
corresponding weight connection between the neighboring
layer of neurons. For thin films, there is a bulk of the layer
between the interfaces, whereas for NNs, there is a
corresponding layer of neurons between the weight
connections. Taking i—1 and i layers as an example, the
interfaces, bulk, and field amplitudes of each layer in the
thin films are plotted on the left panel in Fig. 2. The
corresponding weights, neurons, input, and output of each
layer in the NN are plotted on the right panel in Fig. 2. For
thin films, a;_, and b,_, represent the field amplitudes on the
upward side, and ¢; and d; represent the field amplitudes on
the downward side of the i-th interface. For NN,
Xy =[x, x>, x ,x* ] represents the input and Y;=
[y!,y2,y3,!]" represents the output of the i-th weight
connection.

For the forward propagation process of NNs in the
weight connection, the input and output of the weight
connection is X; ; and Y;, respectively, as shown in the
upper panel in Fig. 2a. ¥; is related to X;_; by the weight
matrix W;, as shown in Eq. 1a. For the forward propagation
process of thin films at the interface, the field amplitudes
on the upward side of the interface are a;_; and b;_;, while
the field amplitudes on the downward side of the interface
are ¢; and d,. ¢; and d; are related to a;_; and b, , by the
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Fig. 2 Structural similarity between thin films and NNs. a The
forward propagation process in multilayer thin films and NNs. b The

backpropagation process in multilayer thin films and NNs.
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interface matrix 7T, given by the boundary conditions of the
electromagnetic field'""”, as shown in Eq. 1b.
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For the forward propagation process of NNs in the layer
of neurons, the input and output of neurons is Y; and X;,
respectively, as shown in the lower panel of Fig. 2a. X; is
related to ¥; by the activation function. The activation
function ¥ is executed independently in each neuron,
which can be viewed as a diagonal matrix, as shown in
Eq. 2a. For the forward propagation process of thin films in
the bulk of the layer, the field amplitudes on the upward
side of the bulk of the i-th layer are ¢; and d;. On the
downward side of the bulk of the i-th layer, the field
amplitudes are ¢; and b;. a; and b; are related to ¢; and d; by
the propagation matrix. The propagation matrix is also

diagonal'"”,  manipulating the field amplitudes
independently, as shown in Eq. 2b.
x! 7 U
= (2a)
x; 0 F |l ¥
, i# .
LS A lE] e

where ¢; is the phase thickness imposed by the bulk of the
i-th layer upon one traversal of light in the propagation
matrix.

The above comparison shows that the forward
propagation processes of NNs and thin films are similar.
By analogy with the backpropagation process of NN, the
backpropagation process of TFNNs can be established the
same way, as shown in Fig. 2b. The gradients in the NNs
and TFNNs, which propagate in the backpropagation
process, were set out from the loss function 7, and Fresnel
reflectance or transmittance r, respectively. The mean
squared error (MSE) is often used as a common loss
function [, to evaluate the difference between the output
and target. Then, the gradients dL/dX; in NNs and dr/da;
in TFNNSs can be calculated in turn.

For the backpropagation process of NNs in the layer of
neurons, the input and output of the layer of neurons is
OL/0X; and OL/dY;, respectively, as shown in the lower
panel in Fig. 2b. JL/JY; is related to JL/0X; by the
derivatives of the activation function 9% /dY;, as shown in
Eq. 3a. For the backpropagation process of TFNNs in the
bulk of the layer, the gradients on the downward side of the
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bulk of i-th layer are dr/da; and Or/0b;; the gradients on
the upward side are dr/dc; and Or/dd;. Through chain
rules, the gradients on the downward and upward sides are
related by the propagation matrix, as shown in Eq. 3b.
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For the backpropagation process of NNs in the weight
connection, the input and output of the weight connection
is JL/dd; and OL/0X;_y, respectively, as shown in the upper
panel in Fig. 2b. Through chain rules, dL/0X;_, is related
to L/AY; by the transposed weight matrix WY, as shown in
Eq. 4a. For the backpropagation process of TFNNs at the
interface, the gradients on the downward side of an
interface are dr/dc; and dr/dd;, while those on the upward
side of an interface are dr/da;_, and Or/0b;_,. dr/da;_; and
0r/[ob;_, are related to dr/dc; and dr/dd; by the transposed

interface matrix 77, as shown in Eq. 4b.
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The details of the backpropagation of TFNNs are
provided in the Supplementary Information. Note that
TFNNs are complex-valued NNs that are different from
conventional NNs.

TFNNs for thin-film optical metrology

To experimentally test the performance of TFNNs for
monolayer and multilayer thin films, a homegrown
software based on the C language was written to
implement TFNNS, and a reflectometer at normal incidence
was built, as shown in Fig. 3a. Fibers F1 and F2 were used
to connect the light source and spectrometer, respectively.
The light passing through lens L1 and L2 was focused on
the wafer surface. The light passing through lens L3 and
L4 was eventually detected by the spectrometer. SiO, thin
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Fig. 3 TFNNs for monolayer thin films.a Schematic view of the
experimental setup consisting of a mirror (M), lens (L), fiber (F), and beam
splitter (BS). An example of the parameter space, refractive index, and
thickness of SiO, thin films on Si substrate, and the convergence process to the

minimum points. b The measured, initial, and fitting spectra of SiO, thin films

on Si substrate.

films with a thickness of d on Si substrates were selected as
monolayer thin film samples. Cauchy equations were used
to model the refractive indices of the SiO, thin films.
Forouhi-Bloomer dispersion relations™* were used to
model the refractive indices of the Si substrates.

For monolayer thin films, the training process of TFNNs
for extracting the thin-film parameters is shown below.
When the measurement was completed, TFNNs take the
measured reflectance as the target. The MSE was used to
evaluate the difference between the output and target to
adaptively adjust the refractive index of SiO, thin films and
their thickness during the training process. The refractive
index of the substrate was fixed. The details of the
refractive index of the substrate are presented in the
Supplementary Information (S11). Fig. 3a shows the local
minimum point in the parameter space. To match the
measured spectra, we selected a group of initial parameters
as the starting point for the training of TFNNs. The
corresponding spectrum of the initial parameters is shown
in Fig. 3b (gray line). Then, the gradient direction was
obtained by the backpropagation process of TFNNs. Each
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parameter was adjusted along the gradient direction. At the
end of training, the generated spectrum of TFNNs matched
the measured spectrum, as shown in Fig. 3b (cyan line).
The entire TFNN training process for monolayer thin films
(four parameters) was completed in 0.1 s. Additional
examples of monolayer thin films with different
thicknesses are provided in the Supplementary Information
(S9). TFNNs are not only suitable for normal incidence
cases but also abnormal ones. Additional examples of
abnormal incidence presented in the
Supplementary Information (S10).

Next, we turn to multilayer thin films. TFNNs were
tested for three types of multilayer thin films with 2, 60,
and 232 layers, as shown in Fig. 4. The training process of
the monolayer and multilayer thin films is essentially the
same; however, only the thickness in each layer was
optimized for multilayer thin films. Additional examples
on optimizing the thickness and refractive indices of SOI
wafers are presented in the Supplementary Information

(S12). The thin films with 60 and 232 layers that were set

cases are
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became quasi-periodic at the end of training. The initial,
fitting, and measured spectra were compared after the
TFNN training process, as shown in Fig. 4. For thin films
with two layers, the training of TFNNs eliminated the
difference between the initial and measured spectra. For
thin films with 60 layers, an excellent fitting result was
obtained despite the large shift between the initial and
measured spectra. For thin films with 232 layers, the
spectra of periodic multilayer thin films usually have
fringes with greater amplitudes than the measured ones.
After the training of TFNNs, the decrease in amplitude
made the simulated spectra more consistent with the
measured spectra. It is interesting to note that quasi-
periodic multilayer thin films usually have larger band gaps
than the periodic ones, as shown by the band gaps in the
232-layer films. The optical inverse problem of 3D NAND,
i.e., the detection of the erroneous layer in 3D NAND, is
shown in the Supplementary Information (S13) as a
potential application of TFNNs. A discussion of the further
reduction of differences and errors is also provided.

to be periodic at the beginning of the TFNN training TFNNs were compared with the conventional
a
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Fig. 4 TFNNs for multilayer thin films. aThe schematic view of 2-layer thin films (left). The measured, initial, and fitting spectra of 2-layer thin films (right). b
The schematic view of 60-layer thin films. The measured, initial, and fitting spectra of 60-layer thin films (right). ¢ The schematic view of 232-layer thin films (left).
The measured, initial, and fitting spectra of 232-layer thin films (right).
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framework. The iteration time required in the conventional
framework and TFNNs for multilayer thin films with 2, 60,
and 232 layers are listed in Table 1. For the conventional
framework, the iteration time increased as the number of
layers increased. In contrast, the iteration time in TFNNs
barely increased with the increase in the number of layers.
It should be noted that when the number of layers is less
than two, the conventional framework is faster because it
requires only one simulation, whereas TFNNs require two
complete propagations, i.e., forward propagation and
backpropagation. The details of the comparison with the
conventional framework are provided in the Supplementary
Information (S6).

Table 1 Time required in the conventional framework and
TFNNSs.

The number of layers in multilayer 2 60 232
thin films

Time required per iteration in 0034s 319 s 67498 s
conventional framework

Time required per iteration in TFNNs 0042 s 01665 0924 s

TFNNs for thin-film inverse design

In this section, another optical inverse problem, i.e.,
thin-film inverse optical design, is discussed based on the
TFNNs. For a particular design task, a large number of
adjustable parameters and multilayer thin films can
improve the correspondence between the designed and
target optical response; however, these also increase the
difficulty of fabrication. Thus, the number of layers should
be determined according to the maximum tolerable
designed and target spectra.
However, in previous data-driven inverse design methods,
changing the number of layers in the model is quite
difficult, and often requires training a new model. Because
TFNNSs are not data-driven and a new layer can be directly
added to previous layers, the process is not difficult.
Complex thin films with many layers can be easily built on

deviation between the

previously trained multilayer thin films with fewer layers.
This design process allows us to retain and transfer the
information learned during the training of multilayer thin
films with fewer layers. When a new layer is added to
previously trained multilayer thin films, its role is to reduce
the residual (i.e., MSE) between the output and the desired
spectra in the new training process, as shown in Fig. 5a.
Once the maximum tolerable deviation between the output
of TFNNs and the desired spectrum is set, we can
determine the number of layers and the thickness of each
one. The details of the reuse properties of TFNNs are
presented in the Supplementary Information (S14).
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Fig. 5 TFNNs that mimic three types of cone cells in human
retina. a The design idea and process of TFNNs for multilayer thin films.
More layers are added to reduce the residual between the output and target
spectra, represented by the MSE. b The three fabricated types of multilayer thin
films. ¢ The target, designed, and measured spectra of multilayer thin films,
whose transmittance spectra are designed to approximate the spectral sensitivity

functions of cone cells in the human retina.

To take colored photos, most physical imaging systems,
particularly digital cameras, use three different filters to
mimic human eyes. However, their sensor responses
slightly overlap compared with the spectral sensitivity
functions of cone cells in the human retina, which is
considered a significant difference”. With regard to the
spectral sensitivity functions of cone cells in the human
retina as the goal of inverse design, we used TFNNs to
design three types of multilayer thin films to simulate the
optical response of cone cells and color perception.

The design process of multilayer thin films for
mimicking the spectral sensitivity functions of green cone
cells is shown in Fig. 5a. The multilayer thin films consist
of alternative SiO, and TiO, films of differentthicknesses.
The MSE decreased with the continuous addition of new
layers. When the number of layers reached 20, the MSE
between the TFNN output and the target was less than 107,
which indicates a good match between the designed and
target spectrum. We designed and fabricated multilayer
thin films (Fig. 5b), with overlapping spectral sensitivities,
particularly those of green and red cone cells (Fig. 5¢). We
built an image-forming 4F system, in which the light
passing through the designed multilayer thin films is
recorded as an image in each color channel, as shown in
Fig. 6a. Then, a colored photo of a macaw's feathers is
produced by superposing the images on all color channels,
as shown in Fig. 6b.
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a
b

Fig. 6 Color photo of a macaw's feathers obtained using the
fabricated multilayer thin films. a The recorded images on each color
channel (blue, green, and red). b The colored photo produced by superposing

images on all color channels.

Discussion

In summary, we proposed the concept of exploiting the
structural similarity of all-optical NNs and thin films, and
applied it to the optical inverse problem. Thus, we
proposed TFNNs as a new framework for the thin-film
optical inverse problem. A connection between multilayer
thin films and multilayer NNs was constructed by
exploiting their structural similarity. In optical metrology,
through the training of TFNNs for extracting thin-film
parameters, we can effectively optimize all the parameters
in monolayer and multilayer thin films. In inverse optical
design, we introduced the design idea and process of
TFNNs. Then, TFNNs were used to design multilayer thin
films to mimic the optical response of three types of cone
cells in the human retina.

To obtain a more in-depth understanding of TFNNs, we
TFNNs reported
artificial neural networks (ANNs) for inverse optical
design“™. For ANNSs, the structural parameters and
thickness of each layer were used as the input, while the
optical responses and spectra of the thin films were used as
the output. Then, the ANNSs can learn how to approximate
Maxwell’s equations. For the training of ANNs, a dataset

16

was required (50,000 samples for thin films with 8 layers”,

distinguished our from previously
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and 500,000 samples for thin films with 20 layers'). The
details of using ANNs to solve the optical inverse problem
of thin films with hundreds of layers are provided in the
Supplementary Information (S7). The input of TFNNs is a
normalized source spectrum; the output is the reflectance
spectrum of the thin films. Because it is directly
constructed using Maxwell’s equations, the spectra
generated by TFNNs are accurate. For the training of
TFNNSs, the parameters can be updated according to the
gradient obtained from the backpropagation process of
TFNNs, without datasets for thin films with hundreds of
layers. The details of the comparison between TFNNs and
ANNs are presented in the Supplementary Information
(S8).

For the further development of TFNNs, we note that the
interface matrix and propagation matrix are all 2x2
complex matrices. This indicates that there are only two
complex neurons in each layer. To add more neurons in
each layer, uniform layers can be replaced by textured
layers”. The electromagnetic fields and permittivity
function were expanded into a Fourier series to determine
the eigensolutions of Maxwell's equations in a periodic
textured medium. The eigenmodes interacted with each
other at the interface and propagated independently in the
bulk of the layer. The size of the interface matrix and
propagation matrix was dependent on the order of the
Fourier expansion”. The extension of this method to other
nanophotonic structures is discussed in the Supplementary
Information.

Materials and methods

Implementation of TFNNs.

A homegrown program was written in C language to
implement TFNNs because of the speed of the C language.
The entire framework can be divided into three parts:
LinearC, Model, and LMAIgo (details in the
Supplementary Information, S15). LinearC provides basic
mathematical functions based on the BLAS and
LAPACK”. A model was built to construct the forward
propagation and backpropagation processes of TFNNs.
LMAIlgo is the optimal algorithm based on the
Levenberg-Marquardt algorithms™ for training TFNNSs.

Platforms for testing TFNNs.

To provide a fair performance comparison, we tested the
conventional framework and TFNNs on the same platform:
a personal computer with an Intel(R) Core(TM) i5-4210H
CPU (2.90GHz). Both the conventional framework and
TFNNs used the C language as the backend and Python as
the frontend by building C extensions. Note that Python
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was only selected because of its convenience and universal
use. Other frontends, such as C#, can also be constructed
for other purposes.
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