[1] |
Zheng, K. Y. et al. Mid-infrared all-optical modulators based on an acetylene-filled hollow-core fiber. Light:Advanced Manufacturing 3, 50 (2022). |
[2] |
Liang, D. & Bowers, J. E. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light:Advanced Manufacturing 2, 59-83 (2021). |
[3] |
Zhang, L. et al. ‘Plug-and-play’ plasmonic metafibers for ultrafast fibre lasers. Light: Advanced Manufacturing 3, 45 (2022). |
[4] |
Li, M. F. et al. Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications. Photonics Research 6, 109-116 (2018). |
[5] |
Zhalehpour, S. et al. System optimization of an all-silicon IQ modulator: achieving 100-gbaud dual-polarization 32QAM. Journal of Lightwave Technology 38, 256-264 (2020). |
[6] |
Zhang, Y. G. et al. 240 Gb/s optical transmission based on an ultrafast silicon microring modulator. Photonics Research 10, 1127-1133 (2022). |
[7] |
Hiraki, T. et al. Heterogeneously integrated III–V/Si MOS capacitor Mach–Zehnder modulator. Nature Photonics 11, 482-485 (2017). |
[8] |
Li, Q. et al. Si racetrack optical modulator based on the III-V/Si hybrid MOS capacitor. Optics Express 29, 6824-6833 (2021). |
[9] |
Haffner, C. et al. Low-loss plasmon-assisted electro-optic modulator. Nature 556, 483-486 (2018). |
[10] |
Heni, W. et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nature Communications 10, 1694 (2019). |
[11] |
Mao, J. W. et al. Efficient silicon and side-cladding waveguide modulator with electro-optic polymer. Optics Express 30, 1885-1895 (2022). |
[12] |
Ummethala, S. et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica 8, 511-519 (2021). |
[13] |
Huang, Y. S. et al. High-bandwidth Si/In2O3 hybrid plasmonic waveguide modulator. APL Photonics 7, 051301 (2022). |
[14] |
He, M. B. et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nature Photonics 13, 359-364 (2019). |
[15] |
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 562, 101-104 (2018). |
[16] |
Sorianello, V. et al. Graphene–silicon phase modulators with gigahertz bandwidth. Nature Photonics 12, 40-44 (2018). |
[17] |
Zhang, M. et al. Integrated lithium niobate electro-optic modulators: when performance meets scalability. Optica 8, 652-667 (2021). |
[18] |
Xu, M. Y. et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nature Communications 11, 3911 (2020). |
[19] |
Hu, J. Y. et al. Folded thin-film lithium niobate modulator based on a poled Mach–Zehnder interferometer structure. Optics Letters 46, 2940-2943 (2021). |
[20] |
Pan, B. C. et al. Demonstration of high-speed thin-film lithium-niobate-on-insulator optical modulators at the 2-μm wavelength. Optics Express 29, 17710-17717 (2021). |
[21] |
Kharel, P. et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica 8, 357-363 (2021). |
[22] |
Chen, G. X. et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics 7, 026103 (2022). |
[23] |
Wang, Z. et al. Silicon–lithium niobate hybrid intensity and coherent modulators using a periodic capacitively loaded traveling-wave electrode. ACS Photonics 9, 2668-2675 (2022). |
[24] |
Wang, C. et al. Nanophotonic lithium niobate electro-optic modulators. Optics Express 26, 1547-1555 (2018). |
[25] |
Li, M. X. et al. Lithium niobate photonic-crystal electro-optic modulator. Nature Communications 11, 4123 (2020). |
[26] |
Pohl, D. et al. 100-GBd waveguide bragg grating modulator in thin-film lithium niobate. IEEE Photonics Technology Letters 33, 85-88 (2021). |
[27] |
Pan, B. C. et al. Compact electro-optic modulator on lithium niobate. Photonics Research 10, 697-702 (2022). |
[28] |
Pan, B. C. et al. Ultra-compact lithium niobate microcavity electro-optic modulator beyond 110 GHz. Chip 1, 100029 (2022). |
[29] |
Moralis-Pegios, M. et al. 4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly. Optics Express 28, 5706-5714 (2020). |
[30] |
Timurdogan, E. et al. 400G silicon photonics integrated circuit transceiver chipsets for CPO, OBO, and pluggable modules. Proceedings of the Optical Fiber Communication Conference (OFC) 2020. San Diego, California, USA: Optica Publishing Group, 2020. |
[31] |
Li, C. et al. Hybrid WDM-MDM transmitter with an integrated Si modulator array and a micro-resonator comb source. Optics Express 29, 39847-39858 (2021). |
[32] |
Pathak, S. et al. Comparison of AWGs and echelle gratings for wavelength division multiplexing on silicon-on-insulator. IEEE Photonics Journal 6, 4900109 (2014). |
[33] |
Dai, D. X. et al. Monolithically integrated 64-channel silicon hybrid demultiplexer enabling simultaneous wavelength- and mode-division-multiplexing. Laser & Photonics Reviews 9, 339-344 (2015). |
[34] |
Dahlem, M. S. et al. Reconfigurable multi-channel second-order silicon microring-resonator filterbanks for on-chip WDM systems. Optics Express 19, 306-316 (2011). |
[35] |
Papaioannou, S. et al. On-chip dual-stream DWDM eight-channel-capable SOI-based MUX s/DEMUX s with 40-GH z channel bandwidth. IEEE Photonics Journal 7, 7900210 (2015). |
[36] |
Liu, D. J. et al. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. Journal of Lightwave Technology 39, 5910-5916 (2021). |
[37] |
Horst, F. et al. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Optics Express 21, 11652-11658 (2013). |
[38] |
Xu, H. N., Dai, D. X. & Shi, Y. C. Low-crosstalk and fabrication-tolerant four-channel CWDM filter based on dispersion-engineered Mach-Zehnder interferometers. Optics Express 29, 20617-20631 (2021). |
[39] |
Liu, D. J., Zhang, M. & Dai, D. X. Low-loss and low-crosstalk silicon triplexer based on cascaded multimode waveguide gratings. Optics Letters 44, 1304-1307 (2019). |
[40] |
Liu, Y. et al. C-band four-channel CWDM (de-)multiplexers on a thin film lithium niobate–silicon rich nitride hybrid platform. Optics Letters 46, 4726-4729 (2021). |
[41] |
Liu, D. J. et al. First demonstration of an on-chip quadplexer for passive optical network systems. Photonics Research 9, 757-763 (2021). |
[42] |
Zhou, J. X. et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching. Chinese Physics Letters 37, 084201 (2020). |
[43] |
Wu, R. B. et al. Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish. Optics Letters 44, 4698-4701 (2019). |
[44] |
Hu, H. et al. Lithium niobate ridge waveguides fabricated by wet etching. IEEE Photonics Technology Letters 19, 417-419 (2007). |
[45] |
Ulliac, G. et al. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application. Optical Materials 53, 1-5 (2016). |
[46] |
Zhang, M. et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536-1537 (2017). |
[47] |
Pan, B. C. et al. Compact racetrack resonator on LiNbO3. Journal of Lightwave Technology 39, 1770-1776 (2021). |
[48] |
Chen, K. X. et al. Four-channel CWDM transmitter chip based on thin-film lithium niobate platform. Journal of Semiconductors 43, 112301 (2022). |
[49] |
He, J. H. et al. High-performance lithium-niobate-on-insulator optical filter based on multimode waveguide gratings. Optics Express 30, 34140-34148 (2022). |
[50] |
Liu, D. J. et al. Four-Channel CWDM (de)multiplexers using cascaded multimode waveguide gratings. IEEE Photonics Technology Letters 32, 192-195 (2020). |
[51] |
Dai, D. X. et al. 10-Channel mode (de)multiplexer with dual polarizations. Laser & Photonics Reviews 12, 1700109 (2018). |
[52] |
Hu, Y. W. et al. Characterization of low loss waveguides using bragg gratings. IEEE Journal of Selected Topics in Quantum Electronics 24, 6101508 (2018). |
[53] |
Liu, D. J., Wu, H. & Dai, D. X. Silicon multimode waveguide grating filter at 2 μm. Journal of Lightwave Technology 37, 2217-2222 (2019). |
[54] |
Gottscho, R. A., Jurgensen, C. W. & Vitkavage, D. J. Microscopic uniformity in plasma etching. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena 10, 2133-2147 (1992). |
[55] |
Shi, W. et al. Silicon photonic grating-assisted, contra-directional couplers. Optics Express 21, 3633-3650 (2013). |
[56] |
Hu, C. R. et al. High-efficient coupler for thin-film lithium niobate waveguide devices. Optics Express 29, 5397-5406 (2021). |
[57] |
Ying, P. et al. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter. Optics Letters 46, 1478-1481 (2021). |
[58] |
Luke, K. et al. Wafer-scale low-loss lithium niobate photonic integrated circuits. Optics Express 28, 24452-24458 (2020). |
[59] |
Wang, C. et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides. Optics Express 25, 6963-6973 (2017). |
[60] |
Krasnokutska, I. et al. Ultra-low loss photonic circuits in lithium niobate on insulator. Optics Express 26, 897-904 (2018). |
[61] |
Liu, Y. et al. Low Vπ thin-film lithium niobate modulator fabricated with photolithography. Optics Express 29, 6320-6329 (2021). |