[1] |
Beniam, I. et al. Laser printing of 3D metallic interconnects. Proceedings of SPIE 9738, Laser 3D Manuf. III. San Francisco, California, United States: SPIE, 97380I (2016). |
[2] |
Charipar, K. M. et al. Laser-induced forward transfer (LIFT) of 3D microstructures. Proceedings of SPIE 10523, Laser 3D Manuf. V. San Francisco, California, United States: SPIE, 105230R (2018). |
[3] |
Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208-211 (1998). |
[4] |
Wender, H. et al. Synthesis of gold nanoparticles by laser ablation of an Au foil inside and outside ionic liquids. Nanoscale 3, 1240-1245 (2011). |
[5] |
Zhang, D. S., Gökce, B. & Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev 117, 3990-4103 (2017). |
[6] |
Huang, H. K. & Lai, J. Mechanism study of nanomaterial synthesis by pulsed laser ablation in liquid. Proceedings of SPIE 10813, Adv. Laser Process. Manuf. II. Beijing: SPIE, 1081318 (2018). |
[7] |
Gemini, L. et al. Upconversion Nanoparticles Synthesized by Ultrashort Pulsed Laser Ablation in Liquid: Effect of the Stabilizing Environment. ChemPhysChem 18, 1210-1216 (2017). |
[8] |
Gelesky, M. A. et al. Laser-induced fragmentation of transition metal nanoparticles in ionic liquids. J. Am. Chem. Soc 127, 4588-4589 (2005). |
[9] |
Wang, H. Q. et al. Selective Pulsed Heating for the Synthesis of Semiconductor and Metal Submicrometer Spheres. Angew. Chemie 122, 6505-6508 (2010). |
[10] |
Tsuji, T. et al. Preparation of submicron-sized spherical particles of gold using laser-induced melting in liquids and low-toxic stabilizing reagent. Appl. Surf. Sci 348, 10-15 (2015). |
[11] |
Lin, T. C. et al. Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat. Commun 10, 4124 (2019). |
[12] |
Yang, S. & Zhang, J. Matrix-Assisted Pulsed Laser Evaporation (MAPLE) technique for deposition of hybrid nanostructures. Front. Nanosci. Nanotechnol 3, 1-9 (2017). |
[13] |
Zou, Y. S. et al. Structural, electrical and optical properties of Mg-doped CuAlO2 films by pulsed laser deposition. RSC Adv 40, 41294-41300 (2014). |
[14] |
Charipar, N. A. et al. Laser processing of VO2 thin films for THz devices and metamaterials. Proceedings of SPIE 10019, Laser Appl. Microelectron. Optoelectron. Manuf. (LAMOM) XXII. San Francisco, California, United States: SPIE, 1009102 (2017). |
[15] |
Gianinoni, I. & Musci, M. Laser-assisted CVD of amorphous materials. J. Non. Cryst. Solids 77–78, 743-752 (1985). |
[16] |
Lin, L. H, et al. Optothermoplasmonic Nanolithography for On-Demand Patterning of 2D Materials. Adv. Funct. Mater 28, 1803990 (2018). |
[17] |
Gattass, R. R. & Mazur, E. Femtosecond laser micromachining in transparent materials. Nat. Photonics 2, 219-225 (2008). |
[18] |
Zuo, P. et al. Maskless Micro/Nanopatterning and Bipolar Electrical Rectification of MoS2 Flakes through Femtosecond Laser Direct Writing. ACS Appl. Mater. Interfaces 11, 39334-39341 (2019). |
[19] |
Seo, B. H., Youn, J. & Shim, M. Direct laser writing of air-stable p-n junctions in graphene. ACS Nano 8, 8831-8836 (2014). |
[20] |
Wei, Y. et al. Laser direct-writing electrode for rapid customization of a photodetector. Opt. Lett 44, 683-686 (2019). |
[21] |
Wanke, M. C. et al. Laser rapid prototyping of photonic band-gap microstructures. Science 275, 1284-1286 (1997). |
[22] |
Lim, K. Y. et al. Laser Pruning of Carbon Nanotubes as a Route to Static and Movable Structures. Adv. Mater 15, 300-303 (2003). |
[23] |
Zhang, X. et al. Direct selective laser sintering of hexagonal barium titanate ceramics. J. Am. Ceram. Soc 104, 1271-1280 (2021). |
[24] |
Li, Q. F. et al. Digital laser micro- and nanoprinting. Nanophotonics 8, 27-44 (2019). |
[25] |
Urban, A. S. et al. Laser printing single gold nanoparticles. Nano Lett 10, 4794-4798 (2010). |
[26] |
Cao, L. J. et al. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9, 2905-2910 (2013). |
[27] |
Xiong, W. et al. Laser-Directed Assembly of Aligned Carbon Nanotubes in Three Dimensions for Multifunctional Device Fabrication. Adv. Mater 28, 2002-2009 (2016). |
[28] |
Zuo, P. et al. Shape-Controllable Gold Nanoparticle-MoS2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS2 via Temporally Shaped Femtosecond Pulses. ACS Appl. Mater. Interfaces 9, 7447-7455 (2017). |
[29] |
Park, S. et al. Micropatterning of metal nanoparticle ink by laser-induced thermocapillary flow. Nanomaterials 8, 645 (2018). |
[30] |
Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625-628 (2015). |
[31] |
Castellanos-Gomez, A. et al. Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett 12, 3187-3192 (2012). |
[32] |
Wolfbeis, O. S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev 44, 4743-4768 (2015). |
[33] |
Pratiwi, F. W. et al. Recent advances in the use of fluorescent nanoparticles for bioimaging. Nanomedicine 14, 1759-1769 (2019). |
[34] |
Wang, F. et al. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 135, 1839-1854 (2010). |
[35] |
Feng, W., Zhu, X. J. & Li, F. Y. Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Mater. 5, e75, http://dx.doi.org/10.1038/am.2013.63 (2013). |
[36] |
Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol 12, 1026-1039 (2017). |
[37] |
Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photonics 10, 631-641 (2016). |
[38] |
Zhang, G. et al. Material platforms for defect qubits and single-photon emitters. Appl. Phys. Rev. 7, 031308, http://dx.doi.org/10.1063/5.0006075 (2020). |
[39] |
Choi, M. K. et al. Flexible quantum dot light-emitting diodes for next-generation displays. npj Flex. Electron 2, 10 (2018). |
[40] |
Li, Y. F., Feng, J. & Sun, H. B. Perovskite quantum dots for light-emitting devices. Nanoscale 11, 19119-19139 (2019). |
[41] |
Zhao, B. & Tan, Z. Fluorescent Carbon Dots: Fantastic Electroluminescent Materials for Light-Emitting Diodes. Adv. Sci 8, 2001977 (2021). |
[42] |
Zhang, Q. et al. Fluorescent nanomaterial-derived white light-emitting diodes: What’s going on. J. Mater. Chem. C 2, 4358-4373 (2014). |
[43] |
Lozano, G. et al. Metallic nanostructures for efficient LED lighting. Light Sci. Appl 5, e16080 (2016). |
[44] |
Liu, Y. et al. Inkjet-printed unclonable quantum dot fluorescent anti-counterfeiting labels with artificial intelligence authentication. Nat. Commun 10, 2409 (2019). |
[45] |
Ren, W. et al. Optical Nanomaterials and Enabling Technologies for High-Security-Level Anticounterfeiting. Adv. Mater 32, 1901430 (2020). |
[46] |
Zhou, B. et al. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol 10, 924-936 (2015). |
[47] |
Kumar, P., Singh, S. & Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: From synthesis to anti-counterfeiting applications. Nanoscale 8, 14297-14340 (2016). |
[48] |
Shikha, S. et al. Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev 46, 7054-7093 (2017). |
[49] |
Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem 100, 13226-13239 (1996). |
[50] |
Bruchez, M. Jr. et al. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013-2016 (1998). |
[51] |
Qu, L. H. & Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc 124, 2049-2055 (2002). |
[52] |
Tang, Z. Y., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237-240 (2002). |
[53] |
Baskoutas, S. & Terzis, A. F. Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 99, 013708, http://dx.doi.org/10.1063/1.2158502 (2006). |
[54] |
Smith, A. M. & Nie, S. M. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Acc. Chem. Res 43, 190-200 (2010). |
[55] |
Yan, F. Y. et al. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review. Microchim. Acta 186, 583, http://dx.doi.org/10.1007/s00604-019-3688-y (2019). |
[56] |
Liu, M. L. et al. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem 21, 449-471 (2019). |
[57] |
Song, Z., Zhao, J. & Liu, Q. L. Luminescent perovskites: Recent advances in theory and experiments. Inorg. Chem. Front 6, 2969-3011 (2019). |
[58] |
Aamir, M. et al. It is an All‐Rounder! On the Development of Metal Halide Perovskite‐Based Fluorescent Sensors and Radiation Detectors. Adv. Opt. Mater. 9, 2101276 (2021). |
[59] |
Kang, D. et al. Lanthanide-Doped Upconversion Nanomaterials: Recent Advances and Applications. Biochip J 14, 124-135 (2020). |
[60] |
Wen, S. H. et al. Advances in highly doped upconversion nanoparticles. Nat. Commun 9, 2415 (2018). |
[61] |
Wang, F. & Liu, X. G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation. Acc. Chem. Res 47, 1378-1385 (2014). |
[62] |
Bettinelli, M., Carlos, L. & Liu, X. G. Lanthanide-doped upconversion nanoparticles. Phys. Today 68, 38-44 (2015). |
[63] |
Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chemie - Int. Ed 50, 5808-5829 (2011). |
[64] |
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett 10, 1271-1275 (2010). |
[65] |
Onwudiwe, D. C. et al. Nanosecond laser irradiation synthesis of CdS nanoparticles in a PVA system. Appl. Surf. Sci 290, 18-26 (2014). |
[66] |
Seah, M. H. R. et al. Blue micro-highlighting in alumina-GO hybrid empowered by focused laser beam. J. Lumin 205, 357-366 (2019). |
[67] |
Lim, S. X. et al. Laser assisted blending of Ag nanoparticles in an alumina veil: a highly fluorescent hybrid. Nanoscale 10, 18145-18152 (2018). |
[68] |
Lim, S. X. et al. Unlocking the potential of carbon incorporated silver-silver molybdate nanowire with light. Appl. Mater. Today 20, 100670 (2020). |
[69] |
Liu, Y. et al. Advances in carbon dots: From the perspective of traditional quantum dots. Mater. Chem. Front 4, 1586-1613 (2020). |
[70] |
Yu, H. W. et al. Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene. Chem. Commun 52, 819-822 (2016). |
[71] |
Yu, M. et al. Universal liquid-phase laser fabrication of various nano-metals encapsulated by ultrathin carbon shells for deep-UV plasmonics. Nanoscale 9, 8716-8722 (2017). |
[72] |
Castro, H. P. S. et al. Synthesis and Characterisation of Fluorescent Carbon Nanodots Produced in Ionic Liquids by Laser Ablation. Chem. - A Eur. J 22, 138-143 (2016). |
[73] |
Castro, H. P. S. et al. Optical characterization of carbon quantum dots in colloidal suspensions. Opt. Mater. Express 7, 401-408 (2017). |
[74] |
Mahdavi, M., Kimiagar, S. & Abrinaei, F. Preparation of Few-Layered Wide Bandgap MoS2 with nanometer lateral dimensions by applying laser irradiation. Crystals 10, 164 (2020). |
[75] |
Samani, M. M. et al. Strong photoluminescence from diameter- modulated single-walled carbon nanotubes. Appl. Phys. Lett 101, 043123 (2012). |
[76] |
Lu, J. et al. Improved photoelectrical properties of MoS2 films after laser micromachining. ACS Nano 8, 6334-6343 (2014). |
[77] |
Hu, L. L. et al. Laser thinning and patterning of MoS2 with layer-by-layer precision. Sci. Rep 7, 15538 (2017). |
[78] |
Li, D. W. et al. In situ imaging and control of layer-by-layer femtosecond laser thinning of graphene. Nanoscale 7, 3651-3659 (2015). |
[79] |
Lu, J. P. et al. Atomic healing of defects in transition metal dichalcogenides. Nano Lett 15, 3524-3532 (2015). |
[80] |
Gong, L. L. et al. Emergence of photoluminescence on bulk MoS2 by laser thinning and gold particle decoration. Nano Res 11, 4574-4586 (2018). |
[81] |
Sow, B. M. et al. Enriched Fluorescence Emission from WS2 Monoflake Empowered by Au Nanoexplorers. Adv. Opt. Mater 5, 1700156 (2017). |
[82] |
Nagareddy, V. K. et al. Humidity-Controlled Ultralow Power Layer-by-Layer Thinning, Nanopatterning and Bandgap Engineering of MoTe2. Adv. Funct. Mater 28, 1804434 (2018). |
[83] |
Sunamura, K. et al. Laser-induced electrochemical thinning of MoS2. J. Mater. Chem. C 4, 3268-3273 (2016). |
[84] |
Huang, S., Zhao, X. & Zheng, Y. Optoelectronic thinning of transition metal dichalcogenides for device fabrication. Proc. IEEE Conf. Nanotechnol. 2020-July, 19–23 (2020). |
[85] |
Wu, S. S. et al. Photo-induced exfoliation of monolayer transition metal dichalcogenide semiconductors. 2D Mater 6, 045052 (2019). |
[86] |
Venkatakrishnan, A. et al. Microsteganography on WS2 Monolayers Tailored by Direct Laser Painting. ACS Nano 11, 713-720 (2017). |
[87] |
Lu, J. P. et al. Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials. ACS Nano 9, 10411-10421 (2015). |
[88] |
Lim, S. X. et al. Polychromic carbon black: Laser galvanized multicolour fluorescence display. Nano Res 12, 733-740 (2019). |
[89] |
Zhang, H. B. et al. Laser-induced fluorescence of fused silica irradiated by ArF excimer laser. J. Appl. Phys. 110, 013107, http://dx.doi.org/10.1063/1.3608163 (2011). |
[90] |
Zhou, X. Y. et al. Laser-induced point defects in fused silica irradiated by UV laser in vacuum. Adv. Condens. Matter Phys. 2014, 853764, http://dx.doi.org/10.1155/2014/853764 (2014). |
[91] |
Castelletto, S. et al. Photoluminescence in hexagonal silicon carbide by direct femtosecond laser writing. Opt. Lett 43, 6077-6080 (2018). |
[92] |
Buividas, R. et al. Photoluminescence from voids created by femtosecond-laser pulses inside cubic-BN. Opt. Lett 40, 5711-5713 (2015). |
[93] |
Saleem, U. et al. Light emission from localised point defects induced in GaN crystal by a femtosecond-pulsed laser. Opt. Mater. Express 8, 2703-2712 (2018). |
[94] |
Chen, Y. C. et al. Laser writing of coherent colour centres in diamond. Nat. Photonics 11, 77-80 (2017). |
[95] |
Chen, Y. C. et al. Laser writing of individual atomic defects in a crystal with near-unity yield. Optica 6, 662-667 (2019). |
[96] |
Castelletto, S. et al. Color centers enabled by direct femto-second laser writing in wide bandgap semiconductors. Nanomaterials 11, 72 (2021). |
[97] |
Chen, Y. C. et al. Laser Writing of Scalable Single Color Centers in Silicon Carbide. Nano Lett 19, 2377-2383 (2019). |
[98] |
Hou, S. Y. et al. Localized emission from laser-irradiated defects in 2D hexagonal boron nitride. 2D Mater. 5, 015010, http://dx.doi.org/10.1088/2053-1582/aa8e61 (2018). |
[99] |
Lu, J. P. et al. Direct laser pruning of CdSxSe1-x nanobelts en route to a multicolored pattern with controlled functionalities. ACS Nano 6, 8298-8307 (2012). |
[100] |
Lu, J. P. et al. Laser modified ZnO/CdSSe core-shell nanowire arrays for micro-steganography and improved photoconduction. Sci. Rep 4, 6350 (2014). |
[101] |
Chua, S. T. et al. Selective micro laser annealing for fluorescence tuning of carbon-incorporated zinc oxide nanowire arrays. J. Mater. Chem. C 7, 6279-6288 (2019). |
[102] |
Shimogaki, T. et al. Effect of laser annealing on optical properties of ion-implanted ZnO nanorods. J. Laser Micro Nanoeng 8, 75-78 (2013). |
[103] |
Chen, X. Y. et al. Mechanisms of photoluminescence from silicon nanocrystals formed by pulsed-laser deposition in argon and oxygen ambient. J. Appl. Phys 93, 6311-6319 (2003). |
[104] |
Choi, Y. R. et al. Laser-induced greenish-blue photoluminescence of mesoporous silicon nanowires. Sci. Rep 4, 4940 (2014). |
[105] |
Wang, S. C. et al. Selective 6H-SiC White Light Emission by Picosecond Laser Direct Writing. Sci. Rep 8, 257 (2018). |
[106] |
Zhang, C. et al. Plasmon-Driven Rapid In Situ Formation of Luminescence Single Crystal Nanoparticle. Small 15, 1901286 (2019). |
[107] |
Kong, T. et al. Fast transformation of a rare-earth doped luminescent sub-microcrystal via plasmonic nanoislands. J. Mater. Chem. C 8, 4338-4342 (2020). |
[108] |
Gao, D. L. et al. Dynamic tailorable local luminescence patterns on single upconversion fluoride microcrystals via in situ oxidation through laser irradiation. J. Mater. Chem. C 7, 11879-11886 (2019). |
[109] |
Gao, D. L. et al. Constructing lattice‐mismatched upconversion luminescence heterojunctions via light welding in seconds. Nano Sel 2, 398-405 (2021). |
[110] |
Min, Q. H. et al. Atomic-Level Passivation of Individual Upconversion Nanocrystal for Single Particle Microscopic Imaging. Adv. Funct. Mater 30, 1906137 (2020). |
[111] |
Dong, Y. H. et al. Photon-Induced Reshaping in Perovskite Material Yields of Nanocrystals with Accurate Control of Size and Morphology. J. Phys. Chem. Lett 10, 4149-4156 (2019). |
[112] |
Zhao, W. W. et al. The Thinnest Light Disk: Rewritable Data Storage and Encryption on WS2 Monolayers. Adv. Funct. Mater 31, 2103140 (2021). |
[113] |
Afaneh, T. et al. Laser-Assisted Chemical Modification of Monolayer Transition Metal Dichalcogenides. Adv. Funct. Mater 28, 1802949 (2018). |
[114] |
Kim, E. et al. Site Selective Doping of Ultrathin Metal Dichalcogenides by Laser-Assisted Reaction. Adv. Mater 28, 341-346 (2016). |
[115] |
Bera, A., Muthu, D. V. S. & Sood, A. K. Enhanced Raman and photoluminescence response in monolayer MoS2 due to laser healing of defects. J. Raman Spectrosc 49, 100-105 (2018). |
[116] |
Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett 13, 2831-2836 (2013). |
[117] |
Mouri, S., Miyauchi, Y. & Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett 13, 5944-5948 (2013). |
[118] |
Oh, H. M. et al. Photochemical Reaction in Monolayer MoS2 via Correlated Photoluminescence, Raman Spectroscopy, and Atomic Force Microscopy. ACS Nano 10, 5230-5236 (2016). |
[119] |
Sivaram, S. V. et al. Spatially Selective Enhancement of Photoluminescence in MoS2 by Exciton-Mediated Adsorption and Defect Passivation. ACS Appl. Mater. Interfaces 11, 16147-16155 (2019). |
[120] |
Lee, Y. et al. Impeding Exciton-Exciton Annihilation in Monolayer WS2 by Laser Irradiation. ACS Photonics 5, 2904-2911 (2018). |
[121] |
He, Z. Y. et al. Revealing Defect-State Photoluminescence in Monolayer WS2 by Cryogenic Laser Processing. ACS Nano 10, 5847-5855 (2016). |
[122] |
Ardekani, H. et al. Reversible Photoluminescence Tuning by Defect Passivation via Laser Irradiation on Aged Monolayer MoS2. ACS Appl. Mater. Interfaces 11, 38240-38246 (2019). |
[123] |
Lee, Y. Y. et al. Progressive Micromodulation of Interlayer Coupling in Stacked WS2/WSe2 Heterobilayers Tailored by a Focused Laser Beam. ACS Appl. Mater. Interfaces 10, 37396-37406 (2018). |
[124] |
Mannebach, E. M. et al. Dynamic Optical Tuning of Interlayer Interactions in the Transition Metal Dichalcogenides. Nano Lett 17, 7761-7766 (2017). |
[125] |
Kang, Y. et al. Plasmonic Hot Electron Induced Structural Phase Transition in a MoS2 Monolayer. Adv. Mater 26, 6467-6471 (2014). |
[126] |
Cadiz, F. et al. Ultra-low power threshold for laser induced changes in optical properties of 2D molybdenum dichalcogenides. 2D Mater. 3, 045008, http://dx.doi.org/10.1088/2053-1583/3/4/045008 (2016). |
[127] |
Currie, M. et al. Optical control of charged exciton states in tungsten disulfide. Appl. Phys. Lett. 106, 201907, http://dx.doi.org/10.1063/1.4921472 (2015). |
[128] |
Yu, Y. L. et al. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 201111(R) (2016). |
[129] |
Bataller, A. W. et al. Dense Electron-Hole Plasma Formation and Ultralong Charge Lifetime in Monolayer MoS2 via Material Tuning. Nano Lett 19, 1104-1111 (2019). |
[130] |
Lim, X. et al. Multicolored carbon nanotubes: Decorating patterned carbon nanotube microstructures with quantum dots. ACS Nano 2, 1389-1395 (2008). |
[131] |
Lim, S. X. et al. Templating nanotraffic light-dynamic tricoloured blinking silver nanoclusters on a graphene oxide film. J. Mater. Chem. C 6, 4641-4648 (2018). |
[132] |
Zhang, Y. et al. Optical trapping and light-induced agglomeration of gold nanoparticle aggregates. Phys. Rev. B - Condens. Matter Mater. Phys 73, 165405 (2006). |
[133] |
Haldar, A. et al. Self-assembly of microparticles in stable ring structures in an optical trap. Phys. Rev. A - At. Mol. Opt. Phys 85, 033832 (2012). |
[134] |
Sato, S., Harada, Y. & Waseda, Y. Optical trapping of microscopic metal particles. Opt. Lett 64, 1807-1809 (1994). |
[135] |
Wang, H. et al. Light-Driven Magnetic Encoding for Hybrid Magnetic Micromachines. Nano Lett. 21, 1628-1635 (2021). |
[136] |
Kwon, J. et al. Generation of highly luminescent micro rings by optical irradiation. Chem. Commun 53, 7642-7644 (2017). |
[137] |
Poh, E. T., Liu, X. G. & Sow, C. H. Laser-Guided Microcanvas Printing of Multicolor Upconversion Nanoparticles on Molybdenum Disulfide Monolayer. Adv. Mater. Interfaces 6, 1901673 (2019). |