View by Category

Industrial applications of AR headsets: a review of the devices and experience
Artem B. Solomashenko, Olga L. Afanaseva, Maria V. Shishova, Igor. E. Gulianskii, Sergey. A. Sobolnikov, et al.
Published Published online: 21 April 2025 , doi: 10.37188/lam.2025.023

This review considers the modern industrial applications of augmented reality headsets. It draws upon a synthesis of information from open sources and press releases of companies, as well as the first-hand experiences of industry representatives. Furthermore, the research incorporates insights from both profile events and in-depth discussions with skilled professionals. A specific focus is placed on the ergonomic characteristics of headsets: image quality, user-friendliness, etc. To provide an objective evaluation of the various headsets, a metric has been proposed which is dependent on the specific application case. This enables a comprehensive comparison of the various devices in terms of their quantitative characteristics, which is of particular importance for the formation of a rapidly developing industry.

Non-destructive optical measurement of transparent objects: a review
Hongda Quan, Wenqi Shi, Lingbao Kong
Published Published online: 11 April 2025 , doi: 10.37188/lam.2025.022

Transparent objects are widely used in various fields, leading to increasing demand for methods of measuring them. However, the measurement of such objects has always been challenging owing to the intricate refraction and reflection phenomena they exhibit. Given that traditional contact measurement methods can damage transparent objects, the use of non-destructive measurement techniques, particularly those based on optical principles, is considered preferable. As a result, various non-destructive measurement methods have been developed for transparent objects by leveraging the unique characteristics of light, and a comprehensive review is imperative for exploring these innovative methods and their potential applications. This review accordingly begins by elucidating the necessity of measuring transparent objects and exploring the concept of transparency. Next, an overview of various non-destructive optical measurement techniques spanning macro-, micro-, and general-scale applications is presented, followed by a discussion of their respective advantages and limitations. Finally, the paper concludes by outlining future directions for potential advancements in the field. This review is expected to serve as a valuable resource for newcomers in the field of transparent object measurement and assist researchers seeking to integrate these techniques into interdisciplinary studies.

Recent Advances in the Fabrication of Highly Sensitive Surface-Enhanced Raman Scattering Substrates: Nanomolar to Attomolar Level Sensing
Shi Bai, Koji Sugioka
Published Published online: 26 May 2021 , doi: 10.37188/lam.2021.013
Surface-enhanced Raman scattering (SERS) techniques have rapidly advanced over the last two decades, permitting multidisciplinary trace analyses and the potential detection of single molecules. This paper provides a comprehensive review of recent progress in strategies for the fabrication of highly sensitive SERS substrates, as a means of achieving sensing on the attomolar scale. The review examines widely used performance criteria, such as enhancement factors. In addition, femtosecond laser-based techniques are discussed as a versatile tool for the fabrication of SERS substrates. Several approaches for enhancing the performance of SERS sensing devices are also introduced, including photo-induced, transient, and liquid-interface assisted strategies. Finally, substrates for real-time sensing and biological applications are also reviewed to demonstrate the powerful analytical capabilities of these methods and the significant progress in SERS research.
Metasurfaces for manipulating terahertz waves
Xiaofei Zang, Bingshuang Yao, Lin Chen, Jingya Xie, Xuguang Guo, et al.
Published Published online: 22 March 2021 , doi: 10.37188/lam.2021.010
Terahertz (THz) science and technology have attracted significant attention based on their unique applications in non-destructive imaging, communications, spectroscopic detection, and sensing. However, traditional THz devices must be sufficiently thick to realise the desired wave-manipulating functions, which has hindered the development of THz integrated systems and applications. Metasurfaces, which are two-dimensional metamaterials consisting of predesigned meta-atoms, can accurately tailor the amplitudes, phases, and polarisations of electromagnetic waves at subwavelength resolutions, meaning they can provide a flexible platform for designing ultra-compact and high-performance THz components. This review focuses on recent advancements in metasurfaces for the wavefront manipulation of THz waves, including the planar metalens, holograms, arbitrary polarisation control, special beam generation, and active metasurface devices. Such ultra-compact devices with unique functionality make metasurface devices very attractive for applications such as imaging, encryption, information modulation, and THz communications. This progress report aims to highlight some novel approaches for designing ultra-compact THz devices and broaden the applications of metasurfaces in THz science.