2022 Vol. 3, No. 3

Article
The application of digital holography for accurate three-dimensional localisation of mosquito-bednet interaction
Matthew L Hall, Katherine Gleave, Angela Hughes, Philip J McCall, Catherine E Towers, et al.
Published. 2022, 3(3) : 369-383 doi: 10.37188/lam.2022.020

Understanding mosquito interaction with long-lasting insecticidal bednets is crucial in the development of more effective intervention methods to protect humans from malaria transmission. As such, a 240 × 240 × 1000 mm laboratory setup for the in-line recording of digital holograms and subsequent in-focus reconstruction and 3D localisation of mosquitoes is presented. Simple bednet background removal methods are used to accurately localise a mosquito obscured by a bednet in 3D coordinates. Simulations and physical data demonstrate that this method is suitable for mosquitoes positioned 3−1000 mm behind a bednet. A novel post-processing technique, involving a cascade-correlation of a Tamura of Intensity focus metric extracted from digitally reconstructed scenes, accurately localises mosquitoes positioned 35−100 mm behind a bednet from a single digital hologram. The result of this study is a scalable digital holographic methodology to examine mosquito-bednet interaction in 3D at a level of accuracy previously only seen in 2D imaging of mosquitoes in a much smaller volume.

Simulation-based design optimization of the holographic wavefront sensor in closed-loop adaptive optics
Andreas Zepp, Szymon Gladysz, Karin Stein, Wolfgang Osten
Published. 2022, 3(3) : 384-399 doi: 10.37188/lam.2022.027

Adaptive optics systems are used to compensate for wavefront distortions introduced by atmospheric turbulence. The distortions are corrected by an adaptable device, normally a deformable mirror. The control signal of the mirror is based on the measurement delivered by a wavefront sensor. Relevant characteristics of the wavefront sensor are the measurement accuracy, the achievable measurement speed and the robustness against scintillation. The modal holographic wavefront sensor can theoretically provide the highest bandwidth compared to other state of the art wavefront sensors and it is robust against scintillation effects. However, the measurement accuracy suffers from crosstalk effects between different aberration modes that are present in the wavefront. In this paper we evaluate whether the sensor can be used effectively in a closed-loop AO system under realistic turbulence conditions. We simulate realistic optical turbulence represented by more than 2500 aberration modes and take different signal-to-noise ratios into account. We determine the performance of a closed-loop AO system based on the holographic sensor. To counter the crosstalk effects, careful choice of the key design parameters of the sensor is necessary. Therefore, we apply an optimization method to find the best sensor design for maximizing the measurement accuracy. By modifying this method to take the changing effective turbulence conditions during closed-loop operation into account, we can improve the performance of the system, especially for demanding signal-to-noise-ratios, even more. Finally, we propose to implement multiple holographic wavefront sensors without the use of additional hardware, to perform multiple measurement at the same time. We show that the measurement accuracy of the sensor and with this the wavefront flatness can be increased significantly without reducing the bandwidth of the adaptive optics system.

Parallax limitations in digital holography: a phase space approach
Ulf Schnars, Claas Falldorf
Published. 2022, 3(3) : 400-407 doi: 10.37188/lam.2022.028

The viewing direction in Digital Holography can be varied if different parts of a hologram are reconstructed. In this article parallax limitations are discussed using the phase space formalism. An equation for the parallax angle is derived with this formalism from simple geometric quantities. The result is discussed in terms of pixel size and pixel number of the image sensor. Change of perspective is demonstrated experimentally by two numerical hologram reconstructions from different parts of one single digital hologram.

Hybrid multimode - multicore fibre based holographic endoscope for deep-tissue neurophotonics
Yang Du, Sergey Turtaev, Ivo T Leite, Adrian Lorenz, Jens Kobelke, et al.
Published. 2022, 3(3) : 408-416 doi: 10.37188/lam.2022.029

In-vivo microendoscopy in animal models became a groundbreaking technique in neuroscience that rapidly expands our understanding of the brain. Emerging hair-thin endoscopes based on multimode fibres are now opening up the prospect of ultra-minimally invasive neuroimaging of deeply located brain structures. Complementing these advancements with methods of functional imaging and optogenetics, as well as extending its applicability to awake and motile animals constitute the most pressing challenges for this technology. Here we demonstrate a novel fibre design capable of both, high-resolution imaging in immobilised animals and bending-resilient optical addressing of neurons in motile animals. The optimised refractive index profile and the probe structure allowed reaching a spatial resolution of 2 μm across a 230 μm field of view for the initial layout of the fibre. Simultaneously, the fibre exhibits negligible cross-talk between individual inner-cores during fibre deformation. This work provides a technological solution for imaging-assisted spatially selective photo-activation and activity monitoring in awake and freely moving animal models.

Integrated binary hologram to monitor cargo release from a drug-eluting film
Arkady S. Abdurashitov, Pavel I. Proshin, Valery V. Tuchin, Gleb B. Sukhorukov
Published. 2022, 3(3) : 417-426 doi: 10.37188/lam.2022.030

Nowadays, holography translates from a pure technical tool for recording the phase and amplitude of the light wave to a widely applicable research-based method. Holographic devices are used for security enhancement, entertainment, 3D display technologies and augmented reality. Binary computer-generated holograms (amplitude or phase-based) are of specific interest. They are easy to compute and their manufacturing methods are fast and robust. In this work, a method of manufacturing amplitude-only binary holograms out of biopolymers films is proposed. Opaque cargo bits made out of different bioactive substances (antibiotics, dyes, etc.) absorb or scatter specific parts of the incoming light wave. Cargo release was conducted by submerging the produced holograms into the aqueous solution at specific pH and temperature levels. Drug elution from the film was traced out by the numerical analysis of the far-field diffraction pattern, which otherwise could only be measured post-factum using sophisticated spectroscopic or chromatography devices. This approach broadens the application of general holography over to the field of biomedical research relevant to quantitative monitoring of the drug elution.

In-process monitoring in laser grooving with line-shaped femtosecond pulses using optical coherence tomography
Satoshi Hasegawa, Masatoshi Fujimoto, Toshihisa Atsumi, Yoshio Hayasaki
Published. 2022, 3(3) : 427-436 doi: 10.37188/lam.2022.033

A line-shaped beam is useful for increasing the processing speed in laser grooving and scribing. In laser grooving, depth control of the processed structure is important for performing precise processing. In this paper, in-process monitoring of the depth of a structure formed by femtosecond laser processing with a line-shaped beam using swept-source optical coherence tomography (SS-OCT) was demonstrated. In the evaluation of the SS-OCT system, the depth resolution, measurement accuracy, and axial measurable range were 15.8 μm, ±2.5 μm and 5.3 mm, respectively. In laser grooving, the structural shape and the distribution of deposited debris were successfully monitored. The measured depth agreed well with the depth obtained using a laser confocal microscope. The proposed method will be effective for precise laser processing with feedback control of the laser parameters based on in-process monitoring of the processed structure.

Miniaturization of a coherent monocular structured illumination system for future combination with digital holography
Andreas Walter Stark, Eugene Wong, Holger Babovsky, Christian Franke, Richard Kowarschik
Published. 2022, 3(3) : 437-444 doi: 10.37188/lam.2022.034

Holographic and 3D-measurement processes are an often-used tool in industry, medicine, and scientific applications. While small deviations of objects can be visualized by holographic means with high accuracy, optical systems with active structured illumination are a reliable source of absolute 3D-information in these fields. The combination of digital holography with structured illumination allows to simultaneously measure deformations and absolute 3D coordinates but also requires coherent light and has already been demonstrated in principle with a stereo camera setup. Multi-camera systems are limited to certain setup sizes given by the volume and distance of the detectors. Reducing the system to a one-camera (monocular) setup reduces space and acquisition costs. By using a multi-aperture illumination source an extremely high projection rate could be realized and reduced to a monocular approach with a novel voxel-calibration technique, while the projection system itself still requires a large amount of space. In this paper we present a miniaturized, monocular 3D-measurement system that works with repeatable, coherent speckles, generated by a fiber-coupled laser whose light was distributed by a fiber-switch to a diffuser plate connected with a measurement-head, also including a camera. By addressing different fibers through the switch, varying but repeatable patterns are generated. The size of the device (diameter < 3 cm) is now mainly limited by the volume of the camera. A first 3D-reconstruction of an object and an outlook for a combination of this system with digital holography is given, allowing absolute 3D-coordinates and relative deviations of object points to be measured simultaneously.

Alleviating the crosstalk effect via a fine-moulded light-blocking matrix for colour-converted micro-LED display with a 122% NTSC gamut
Yongming Yin, Zhiping Hu, Muhammad Umair Ali, Miao Duan, Yongwei Wu, et al.
Published. 2022, 3(3) : 445-452 doi: 10.37188/lam.2022.036

One of the major challenges when fabricating high gamut colour-converted micro-light-emitting diodes (LEDs) displays is severe crosstalk effect among adjacent pixels because of the wide view-angle feature of micro-LED chips. In this study, potential factors that contribute to the crosstalk effect were systematically simulated. We observed that precisely filling the space between each micro-LED chip with a light blocking matrix (LBM) can be a promising solution to alleviate this risk. After careful investigations, a press-assisted moulding technique was demonstrated to be an effective approach of fabricating the LBM. Nevertheless, experimental observations further revealed that residual black LBM on the surface of micro-LEDs severely reduces the brightness, thereby compromising the display performance. This problem was successfully addressed by employing a plasma etching technique to efficiently extract the trapped light. Eventually, a top-emitting blue micro-LED-based backlight fine-moulded with a black LBM was developed and combined with red and green quantum dot colour-conversion layers for full-colour display. The colour gamut of our manufactured display prototype can cover as high as 122% that of the National Television Standards Committee.

Integrated self-referencing single shot digital holographic microscope and optical tweezer
Subhash Utadiya, Sachin Joshi, Nimit Patel, Chetna Patel, Mugdha Joglekar, et al.
Published. 2022, 3(3) : 453-465 doi: 10.37188/lam.2022.037

Digital holographic microscopy is a single-shot technique for quantitative phase imaging of samples, yielding thickness profiles of phase objects. It provides sample features based on their morphology, leading to their classification and identification. However, observing samples, especially cells, in fluids using holographic microscopes is difficult without immobilizing the object. Optical tweezers can be used for sample immobilization in fluids. The present manuscript provides an overview of our ongoing work on the development of a compact, low-cost microscopy system for digital holographic imaging of optically trapped samples. Integration of digital holographic microscopy system with tweezers is realized by using the optical pickup unit extracted from DVD burners to trap microsamples, which are then holographically imaged using a highly compact self-referencing interferometer along with a low-cost, in-house developed quadrant photodiode, providing morphological and spectral information of trapped particles. The developed integrated module was tested using polystyrene microspheres as well as human erythrocytes. The investigated system offers a multitude of sample features, including physical and mechanical parameters and corner frequency information of the sample. These features were used for sample classification. The proposed technique has vast potential in opening up new avenues for low-cost, digital holographic imaging and analysis of immobilized samples in fluids and their classification.

Towards in-situ diagnostics of multi-photon 3D laser printing using optical coherence tomography
Roman Zvagelsky, Frederik Mayer, Dominik Beutel, Carsten Rockstuhl, Guillaume Gomard, et al.
Published. 2022, 3(3) : 466-480 doi: 10.37188/lam.2022.039

In recent years, multi-photon 3D laser printing has become a widely used tool for the fabrication of micro- and nanostructures for a large variety of applications. Typically, thorough sample characterisation is key for an efficient optimisation of the printing process. To date, three-dimensional microscopic inspection has usually been carried out on finished 3D printed microstructures, that is, using ex-situ approaches. In contrast, in-situ 3D characterization tools are desirable for quickly assessing the quality and properties of 3D printed microstructures. Along these lines, we present and characterise a Fourier-domain optical coherence tomography (FD-OCT) system that can be readily integrated into an existing 3D laser lithography setup. We demonstrate its capabilities by examining different 3D printed polymer microstructures immersed in a liquid photoresist. In such samples, local reflectivity arises from the (refractive-index) contrasts between the polymerised and non-polymerised regions. Thus, the refractive index of the printed material can be extracted. Furthermore, we demonstrate that the reflectivity of polymer-monomer transitions exhibits time-dependent behaviour after printing. Supported by transfer-matrix calculations, we explain this effect in terms of the time-dependent graded-index transition originating from monomer diffusion into the polymer matrix. Finally, we show exemplary 3D reconstructions of printed structures that can be readily compared with 3D computer designs.

Review
Phase microscopy and surface profilometry by digital holography
Myung K. Kim
Published. 2022, 3(3) : 481-492 doi: 10.37188/lam.2022.019

Quantitative phase microscopy by digital holography is a good candidate for high-speed, high precision profilometry. Multi-wavelength optical phase unwrapping avoids difficulties of numerical unwrapping methods, and can generate surface topographic images with large axial range and high axial resolution. But the large axial range is accompanied by proportionately large noise. An iterative process utilizing holograms acquired with a series of wavelengths is shown to be effective in reducing the noise to a few micrometers even over the axial range of several millimeters. An alternate approach with shifting of illumination angle, instead of using multiple laser sources, provides multiple effective wavelengths from a single laser, greatly simplifying the system complexity and providing great flexibility in the wavelength selection. Experiments are performed demonstrating the basic processes of multi-wavelength digital holography (MWDH) and multi-angle digital holography (MADH). Example images are presented for surface profiles of various types of surface structures. The methods have potential for versatile, high performance surface profilometry, with compact optical system and straightforward processing algorithms.

Advanced optical methods and materials for fabricating 3D tissue scaffolds
Xiaobo Li, Wanping Lu, Xiayi Xu, Yintao Wang, Shih-Chi Chen
Published. 2022, 3(3) : 493-524 doi: 10.37188/lam.2022.026

Three-dimensional (3D) printing, also known as additive manufacturing (AM), has undergone a phase of rapid development in the fabrication of customizable and high-precision parts. Thanks to the advancements in 3D printing technologies, it is now a reality to print cells, growth factors, and various biocompatible materials altogether into arbitrarily complex 3D scaffolds with high degree of structural and functional similarities to the native tissue environment. Additionally, with overpowering advantages in molding efficiency, resolution, and a wide selection of applicable materials, optical 3D printing methods have undoubtedly become the most suitable approach for scaffold fabrication in tissue engineering (TE). In this paper, we first provide a comprehensive and up-to-date review of current optical 3D printing methods for scaffold fabrication, including traditional extrusion-based processes, selective laser sintering, stereolithography, and two-photon polymerization etc. Specifically, we review the optical design, materials, and representative applications, followed by fabrication performance comparison. Important metrics include fabrication precision, rate, materials, and application scenarios. Finally, we summarize and compare the advantages and disadvantages of each technique to guide readers in the optics and TE communities to select the most fitting printing approach under different application scenarios.

Holography with high-power CW coherent terahertz source: optical components, imaging, and applications
Yulia Choporova, Boris Knyazev, Vladimir Pavelyev
Published. 2022, 3(3) : 525-541 doi: 10.37188/lam.2022.031

This paper presents the results of 15 years of studies in the field of terahertz holography at the Novosibirsk free electron laser. They cover two areas: research on obtaining holographic images in the terahertz range and the use of diffractive optical elements to form high-power terahertz radiation fields with specified characteristics (intensity, phase, and polarization), using well-studied and widely applied in the optical range methods of optical (analog), digital, and computer-generated holography. All experiments were performed with the application of high-power coherent monochromatic frequency-tunable radiation from the Novosibirsk free electron laser. The features of hologram registration in the terahertz range are described. Methods, technologies, and optical materials for terahertz holographic elements are discussed. A wide range of promising applications of high-power terahertz fields with a given spatial structure is considered. The results of the study of terahertz holograms recorded as digital holograms, as well as radiation-resistive optical elements realized as computer-synthesized holograms, are presented.

Additive manufacturing of high aspect-ratio structures with self-focusing photopolymerization
Mingyu Yang, Kavin Kowsari, Nia O. Myrie, Daniela Espinosa-Hoyos, Anna Jagielska, et al.
Published. 2022, 3(3) : 542-571 doi: 10.37188/lam.2022.032

Photocrosslinkable polymers have been exploited to attain impressive advantages in printing freestanding, micrometer-scale, mechanically compliant features. However, a more integrated understanding of both the polymer photochemistry and the microfabrication processes could enable new strategic design avenues, unlocking far-reaching applications of the light-based modality of additive manufacturing. One promising approach for achieving high-aspect-ratio structures is to leverage the phenomenon of light self-trapping during the photopolymerization process. In this review, we discuss the design of materials that facilitate this optical behavior, the computational modeling and practical processing considerations to achieve high aspect-ratio structures, and the range of applications that can benefit from architectures fabricated using light self-trapping—especially those demanding free-standing structures and materials of stiffnesses relevant in biological applications. Coupled interactions exist among material attributes, including polymer composition, and processing parameters such as light intensity. We identify strong opportunities for predictive design of both the material and the process. Overall, this perspective describes the wide range of existing polymers and additive manufacturing approaches, and highlights various future directions to enable constructs with new complexities and functionalities through the development of next-generation photocrosslinkable materials and micromanufacturing methods.

The state-of-the-art in computer generated holography for 3D display
David Blinder, Tobias Birnbaum, Tomoyoshi Ito, Tomoyoshi Shimobaba
Published. 2022, 3(3) : 572-600 doi: 10.37188/lam.2022.035

Holographic displays have the promise to be the ultimate 3D display technology, able to account for all visual cues. Recent advances in photonics and electronics gave rise to high-resolution holographic display prototypes, indicating that they may become widely available in the near future. One major challenge in driving those display systems is computational: computer generated holography (CGH) consists of numerically simulating diffraction, which is very computationally intensive. Our goal in this paper is to give a broad overview of the state-of-the-art in CGH. We make a classification of modern CGH algorithms, we describe different algorithmic CGH acceleration techniques, discuss the latest dedicated hardware solutions and indicate how to evaluate the perceptual quality of CGH. We summarize our findings, discuss remaining challenges and make projections on the future of CGH.

Compression strategies for digital holograms in biomedical and multimedia applications
Peter Schelkens, Ayyoub Ahar, Antonin Gilles, Raees Kizhakkumkara Muhamad, Thomas J. Naughton, et al.
Published. 2022, 3(3) : 601-621 doi: 10.37188/lam.2022.040

While 60 years of successful application of holography is celebrated in this special issue, efficient representation and compression of holographic data has received relatively little attention in research. Notwithstanding this observation, and particularly due to the digitization that is also penetrating the holographic domain, interest is growing on how to efficiently compress holographic data such that interactive exchange of content, as well as digital storage can be facilitated proficiently. This is a particular challenge, not only because of its interferometric nature and the various representation formats, but also the often extremely large data volumes involved in pathological, tomographic, or high-end visualization applications. In this paper, we provide an overview of the state of the art in compression techniques and corresponding quality metrics for various practical applications in digital holography. We also consider the future by analyzing the emerging trends for addressing the key challenges in this domain.