View by Category

A universal high-resolution micro-patterning technique for solution-processed materials
John Leo Velpugonda, Naresh Varnakavi, Matthew Yerich, Lih Y Lin
Published Published online: 19 March 2025 , doi: 10.37188/lam.2025.015
A universal method of micro-patterning thin quantum dot films is highly desired by industry to enable the integration of quantum dot materials with optoelectronic devices. Many of the methods reported so far, including specially engineered photoresist or ink-jet printing, are either of poor yield, resolution limited, difficult to scale for mass production, overly expensive, or sacrificing some optical quality of the quantum dots. In our previous work, we presented a dry photolithographic lift-off method for pixelization of solution-processed materials and demonstrated its application in patterning perovskite quantum dot pixels, 10 µm in diameter, to construct a static micro-display. This report presents further development of this method and demonstrates high-resolution patterning (~1 µm diameter), full-scale processing on a 100 mm wafer, and multi-color integration of two different varieties of quantum dots. Perovskite and cadmium-selenide quantum dots were adopted for the experimentation, but the method can be applied to other types of solution-processed materials. We also demonstrate the viability of this method for constructing high-resolution micro-arrays of quantum dot color-convertors by fabricating patterned films directly on top of a blue gallium-nitride LED substrate. The green perovskite quantum dots used for fabrication were synthesized via the room-temperature ligand-assisted reprecipitation method developed by our research group, yielding a photoluminescent quantum yield of 93.6% and full-width half-maximum emission linewidth less than 20 nm. Our results demonstrate the viability of this method for use in scalable manufacturing of high-resolution micro-displays paving the way for improved optoelectronic applications.
Improvement of the perovskite photodiodes performance via advanced interface engineering with polymer dielectric
Andrey P. Morozov, Lev O. Luchnikov, Sergey Yu. Yurchuk, Artur R. Ishteev, Pavel A. Gostishchev, et al.
Published Published online: 18 March 2025 , doi: 10.37188/lam.2025.024
Halide perovskite-based photodiodes are promising for efficient detection across a broad spectral range. Perovskite absorber thin-films have a microcrystalline morphology, characterized by a high density of surface states and defects at inter-grain interfaces. In this work, we used dielectric/ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) to modify the bulk interfaces and electron transport junction in p-i-n perovskite photodiodes. Our complex work demonstrates that interface engineering with P(VDF-TrFE) induces significant Fermi level pinning, reducing from 4.85 eV for intrinsic perovskite to 4.28 eV for the configuration with dielectric interlayers. Modifying the interfaces in the devices resulted in an increase in the key characteristics of photodiodes compared to pristine devices. The integration of P(VDF-TrFE) into the perovskite film didn’t affect the morphology and crystal structure, but significantly changed the charge transport and device performance. IV curve analysis and 2-diode model calculations showed enhanced shunt properties, a decreased non-ideality factor, and reduced saturation dark current. We have shown that the complex introduction of P(VDF-TrFE) into the absorber’s bulk and on its surface is essential to reduce the impact of the trapping processes. For P(VDF-TrFE) containing devices, we increased the specific detectivity from 1011 to ~1012 Jones, expanded the linear dynamic range up to 100 dB, and reduced the equivalent noise power to 10−13 W·Hz−1/2. Reducing non-radiative recombination contributions significantly enhanced device performance, improving rise/fall times from 6.3/10.9 µs to 4.6/6.5 µs, and achieved photo-response dynamics competitive with state-of-the-art analogs. The cut-off frequency (3dB) increased from 64.8 kHz to 74.8 kHz following the introduction of the dielectric. We also demonstrated long-term stabilization of PPD performance under heat-stress. These results provide new insights into the use of organic dielectrics and an improved understanding of trap-states/ion defect compensation for detectors based on perovskite heterostructures.
Early detection of lithium battery leakage using a highly sensitive in situ ZIF-8 membrane-coated micro-nano optical fibre
Shunfeng Sheng, Hao Li, Yi Zhang, Liangye Li, Kai Xiao, et al.
Published Published online: 12 March 2025 , doi: 10.37188/lam.2025.014
Detecting electrolyte leakage is an effective early warning approach for abnormal faults in lithium-ion batteries (LIBs) and can help mitigate safety risks such as fires and explosions. However, detecting electrolyte leakage in the early stages of LIB faults presents a significant challenge, as leaks in LIBs produce volatile organic compounds (VOCs) at parts per million levels that are difficult to detect using conventional VOC sensors. Here, an effective LIB VOC sensor using micro-nano optical fibres (MNFs) has been developed for the first time, coated with an in situ self-assembled zeolitic imidazolate framework-8 (ZIF-8) membrane as an electrolyte-sensitive layer. The abundance of pores in ZIF-8 is excellent for adsorbing a variety of VOCs, including diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, and propylene carbonate. The MNFs possess high refractive index sensitivity, enhancing the online monitoring of electrolytes. MNFs with a diameter of approximately 7 μm were assembled with four-cycle ZIF-8 of approximately 500 nm thickness, as the fabricated sensor. Through wavelength demodulation, the LIB sensor demonstrated high sensitivity, detecting 43.6 pm/ppm of VOCs and exhibiting rapid response and recovery times of typically within 10 min and 23 s, respectively, as well as a low theoretical detection limit of 2.65 ppm for dimethyl carbonate vapor with excellent reversibility. The first on-site verification of online LIB leakage monitoring demonstrated that the sensor achieved a 35 h early warning prior to full-load leakage, thus exhibiting promising prospects for applications in scenarios such as car batteries.
A Non-volatile Switchable Infrared Stealth Metafilm with GST
Cong Quan, Song Gu, Tingzhao Fu, Ping Liu, Wei Xu, et al.
Published Published online: 08 March 2025 , doi: 10.37188/lam.2025.016
In this paper, we experimentally demonstrate a non-volatile switchable infrared stealth metafilm based on high temperature resistant metal Molybdenum (Mo) and phase change material Ge2Sb2Te5(GST). By controlling the phase state of GST, the switch between the infrared stealth and the non-stealth states can be realized. Specifically, when the GST is in the amorphous state, the emissivity of the film in the 3−5 μm and 8−14 μm atmospheric window band is suppressed and can realize infrared stealth, together with a high absorption peak of 94% at 6.08 μm, which enables radiative heat dissipation; While for the crystalline state of the GST, the average emissivity is more than 0.7 in the band of 8−14 μm, and the infrared stealth function cannot be realized. When the background temperature is 100°C, the temperature difference between the two samples reaches as high as 28°C under an infrared thermal imager. Therefore, our proposed metafilm can flexibly regulate the infrared thermal radiation of the target so as to realize the switch between the infrared stealth and non-stealth state. We have fabricated the metafilm on both hard and flexible substrates. Our work holds profound significance for the study of dynamic thermal radiation control and it is set to pave the way for the practical implementation of intelligent infrared stealth technology.
Glycerol-assisted grain modulation in femtosecond-laser-induced photochemical synthesis of patterned ZnO nanomaterials
Yingchen Wang, Songyan Xue, Yinuo Xu, Jing Long, Binzhang Jiao, et al.
Published Published online: 07 March 2025 , doi: 10.37188/lam.2025.007
ZnO nanomaterials have become appealing for next-generation micro/nanodevices owing to their remarkable functionality and outstanding performance. However, in-situ, one-step, patterned synthesis of ZnO nanomaterials with small grain sizes and high specific surface areas remains challenging. While breakthroughs in laser-based synthesis techniques have enabled simultaneous growth and patterning of these materials, device integration restrictions owing to pre-prepared laser-absorbing layers remain a severe issue. Herein, we report a single-step femtosecond laser direct writing (FsLDW) method for fabricating ZnO nanomaterial micropatterns with a minimum linewidth of less than 1 μm without requiring laser-absorbing layers. Furthermore, utilizing the grain-size modulation effect of glycerol, we successfully reduced the grain size and addressed the challenges of discontinuity and non-uniform product formation during FsLDW. Using this technique, we successfully fabricated a series of micro-photodetectors with exceptional performance, a switching ratio of 105, and a responsivity of 102 A/W. Notably, the devices exhibited an ultralow dark current of less than 10 pA, more than one order of magnitude lower than the dark current of ZnO photodetectors under the same bias voltage—crucial for enhancing the signal-to-noise ratio and reducing the power consumption of photodetectors. The proposed method could be extended to preparing other metal-oxide nanomaterials and devices, thus providing new opportunities for developing customized, miniaturized, and integrated functional devices.
Achiral light-controlled coding metasurfaces with multi-channel electromagnetic control
Yuxi Li, Ruichao Zhu, Sai Sui, Yajuan Han, Aixia Wang, et al.
Published Published online: 06 March 2025 , doi: 10.37188/lam.2025.013
Programmable digital coding metasurfaces (PDCMs) can manipulate electromagnetic waves with high degrees of freedom, significantly enriching metasurface designs. However, most PDCMs are limited to the control of a single polarization, which cannot meet the requirements of the high integration of intelligent components. To further improve the practicability and flexibility of metasurfaces, we propose an integrated paradigm for spin-decoupling PDCMs based on light emitting diode arrays that fully embed the photoresistor as a part of the meta-atom to independently manipulate the wavefront in different polarizations. As a proof of concept, PDCMs were simulated, fabricated, and measured to verify the feasibility and effectiveness of the proposed method. The functions of scattering and vortices are verified at different polarizations, demonstrating that the metasurface can tailor the EM functions in six channels. This study can improve the integration of intelligent control metasurfaces and lay a solid foundation for their development.
Ultrafast laser writing structural colors on TiAlN-TiN hybrid films
Liping Shi, Panpan Niu, Qilin Jiang, Ji Yan, Jiao Geng
Published Published online: 18 February 2025 , doi: 10.37188/lam.2025.006

We experimentally demonstrate ultrafast laser-writing wide-gamut structural colors on TiAlN thin film that is coated on TiN substrate via laser-induced surface oxidation. The experiments involve thorough control over laser parameters, including powers, scanning speeds and pulse durations, to investigate the interplay between these variables and the resulting structural colors. Surface characterization techniques, such as scanning electron microscopy, energy-dispersive x-ray spectroscopy and atomic force microscopy, are employed to analyze the properties of laser-induced oxide layers and their chromatic responses. Our findings indicate that while laser powers and scanning speeds are critical in determining the irradiated dose and the subsequent coloring effects, the pulse duration exerts a distinct influence, particularly at low laser powers as well as slow scanning speeds. Longer pulse durations are found to produce a more significant coloring change despite exhibiting lower oxygen content. This is attributed to the increased surface roughness and deeper oxidation layer achieved with prolonged pulses. We propose two oxidation mechanisms – photo-oxidation and thermal-oxidation – to elucidate the influence of pulse duration on laser coloring effects. These findings not only refine existing paradigms in laser-induced surface coloration but also stimulate further exploration of structural colors’ multifaceted applications across diverse technological contexts.

Design of multipass cell with dense spot patterns and its performance in a light-induced thermoelastic spectroscopy-based methane sensor
Yufei Ma, Yahui Liu, Ying He, Shunda Qiao, Haiyue Sun
Published Published online: 17 January 2025 , doi: 10.37188/lam.2025.001

In this study, a ray tracing model based on the law of reflection in vector form was developed to obtain the design parameters of multipass cells (MPC) with dense spot patterns. Four MPCs with distinct patterns were obtained using an established mathematical model. An MPC with a four-concentric-circle pattern exhibited the longest optical path length (OPL) of approximately 38 m and an optimal ratio of optical path length to volume (RLV) of 13.8 cm-2. A light-induced thermoelastic spectroscopy (LITES)-based methane (CH4) sensor was constructed for the first time using the developed optimal MPC and Raman fiber amplifier (RFA). A novel trapezoidal-tip quartz tuning fork (QTF) was used as the detector to further improve the sensing performance. The CH4-LITES sensor exhibited an excellent linear response to optical power and CH4 concentration. The minimum detection limit (MDL) of the CH4-LITES sensor reached 322 ppb when the output optical power of the RFA was 350 mW. The Allan deviation of the system indicated that the MDL decreased to 59.5 ppb when the average time was increased to 100 s.

Superior ultrafast laser-inscribed photonic-lantern mode (de)multiplexers using trajectory-asymmetry with uniform waveguides
Chengkun Cai, Min Yang, Guofeng Yan, Kang Li, Kangrui Wang, et al.
Published Published online: 17 January 2025 , doi: 10.37188/lam.2025.002

Femtosecond laser fabrication technology has been applied to photonic-lantern mode (de)multiplexers owing to its 3D fabrication capability. Current photonic-lantern mode (de)multiplexer designs based on femtosecond laser fabrication technology mostly follow a fibre-type photonic lantern design, which uses trajectory-symmetry structures with non-uniform waveguides for selective mode excitation. However, non-uniform waveguides can lead to inconsistent waveguide transmission and coupling losses. Trajectory-symmetry designs are inefficient for selective-mode excitation. Therefore, we optimised the design using trajectory asymmetry with uniform waveguides and fabricated superior ultrafast laser-inscribed photonic-lantern mode (de)multiplexers. Consistent waveguide transmission and coupling losses (0.1 dB/cm and 0.2 dB/facet, respectively) at 1550 nm were obtained on uniform single-mode waveguides. Based on the trajectory-asymmetry design for photonic-lantern mode (de)multiplexers, efficient mode excitation (

\begin{document}$ {LP}_{11}^{a} $\end{document}

,

\begin{document}$ {LP}_{11}^{b} $\end{document}

, and

\begin{document}$ {LP}_{01} $\end{document}

) with average insertion losses as low as 1 dB at 1550 nm was achieved, with mode-dependent losses of less than 0.3 dB. The photonic-lantern design was polarisation-insensitive, and the polarisation-determined losses were less than 0.2 dB. Along with polarisation multiplexing realised by fibre-type polarisation beam splitters, six signal channels (

\begin{document}$ {LP}_{11x}^{a} $\end{document}

,

\begin{document}$ {LP}_{11y}^{a} $\end{document}

,

\begin{document}$ {LP}_{11x}^{b} $\end{document}

,

\begin{document}$ {LP}_{11y}^{b} $\end{document}

,

\begin{document}$ {LP}_{01x} $\end{document}

, and

\begin{document}$ {LP}_{01y} $\end{document}

), each carrying 42 Gaud/s quadrature phase-shift keying signals, were transmitted through a few-mode fibre for optical transmission. The average insertion loss of the system is less than 5 dB, while its maximum crosstalk with the few-mode fibre is less than −12 dB, leading to a 4-dB power penalty. The findings of this study pave the way for the practical application of 3D integrated photonic chips in high-capacity optical transmission systems.

Vision-based sampling implementation in the Chang’e-6 lunar farside sample return mission
Congjia Chen, Xiaoyu Jia, Gao Zhang, Yanhong Zheng, Xiangjin Deng, et al.
Published Published online: 08 January 2025 , doi: 10.37188/lam.2025.010

Lunar sample return missions are crucial for researching the composition and origin of the Moon. In recent decades, several lunar sample return missions have been conducted, yielding abundant and valuable lunar samples. As the latest development in lunar sample returns, the Chang’e-6 mission aimed to implement lunar farside sampling. The shorter time available for sampling requires higher sampling efficiency. In this study, the main factors in the sampling site selection and sampling process are introduced and a vision-based sampling implementation is designed for the Chang’e-6 mission to significantly simplify manual operation while maintaining high sampling quality. By sufficiently leveraging the point cloud data reconstructed from the binocular camera images, autonomous terrain analysis and sample point selection are achieved. A 6D pose estimation pipeline based on point cloud registration provides a robust method for sampler pose measurement, replacing the previous manual fine-tuning process and achieving better accuracy. Owing to the well-analyzed sample points and accurate fine-tuning, the proposed approach demonstrates high accuracy in controlling the scooping depth, while significantly reducing the time cost of the sampling implementation, effectively supporting the Chang’e-6 lunar sample mission.

  • First
  • Prev
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • Last
  • Total:14
  • To
  • Go